Home About us Contact | |||
HLA-DR Expression (hla-dr + expression)
Selected AbstractsMemory B cells from a subset of treatment-naïve relapsing-remitting multiple sclerosis patients elicit CD4+ T-cell proliferation and IFN-, production in response to myelin basic protein and myelin oligodendrocyte glycoproteinEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 10 2010Christopher T. Harp Abstract Recent evidence suggests that B- and T-cell interactions may be paramount in relapsing-remitting MS (RRMS) disease pathogenesis. We hypothesized that memory B-cell pools from RRMS patients may specifically harbor a subset of potent neuro-APC that support neuro-Ag reactive T-cell proliferation and cytokine secretion. To test this hypothesis, we compared CD80 and HLA-DR expression, IL-10 and lymphotoxin-, secretion, neuro-Ag binding capacity, and neuro-Ag presentation by memory B cells from RRMS patients to naïve B cells from RRMS patients and to memory and naïve B cells from healthy donors (HD). We identified memory B cells from some RRMS patients that elicited CD4+ T-cell proliferation and IFN-, secretion in response to myelin basic protein and myelin oligodendrocyte glycoprotein. Notwithstanding the fact that the phenotypic parameters that promote efficient Ag presentation were observed to be similar between RRMS and HD memory B cells, a corresponding capability to elicit CD4+ T-cell proliferation in response to myelin basic protein and myelin oligodendrocyte glycoprotein was not observed in HD memory B cells. Our results demonstrate for the first time that the memory B-cell pool in RRMS harbors neuro-Ag specific B cells that can activate T cells. [source] Antibiotics modulate the stimulated cytokine response to endotoxin in a human ex vivo, in vitro modelACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 9 2006S. Ziegeler Background:, Sepsis may lead to the suppression of stimulated cytokine release after Gram-negative stimuli, correlating with a fatal outcome. Treatment of sepsis includes adequate therapy with antibiotics. The aim of this study was to investigate the role of antibiotics in the modulation of the lipopolysaccharide (LPS)-stimulated cytokine response of human monocytes. Methods:, In this ex vivo, in vitro study, whole blood samples were taken from 10 healthy volunteers, stimulated with LPS in the presence or absence of various antibiotics (penicillin, amoxicillin, cefuroxime, ceftazidime, cefotaxime, piperacillin/tazobactam, imipenem/cilastatin, gentamicin, netilmicin, ciprofloxacin, vancomycin) and cultured for 24 h. Thereafter, tumor necrosis factor-, (TNF-,) and interleukin-10 (IL-10) were measured in the supernatants by enzyme-linked immunosorbent assay (ELISA). Furthermore, CD14 and HLA-DR expression on monocytes was assessed using flow cytometry. Results:, All cephalosporins decreased LPS-stimulated IL-10 release. Cefuroxime and cefotaxime also decreased the expression density of the LPS recognition molecule CD14 on monocytes. An increase in LPS-stimulated IL-10 release was observed with vancomycin. A suppression of LPS-stimulated TNF-, and IL-10 release was observed in the presence of ciprofloxacin. Conclusion:, These results indicate a modulation of the expression density of CD14 on monocytes, together with a shift from a balanced to an inflammatory cytokine release pattern, by cefuroxime and cefotaxime. Vancomycin changes the response to an anti-inflammatory release pattern. After ciprofloxacin, a profound unresponsiveness of immune-competent cells to LPS stimulation is observed. Because of the critical role of a balanced innate immune response, these data may be of importance for the selection of antibiotics in septic patients. [source] ORIGINAL ARTICLE: Impact of Female Sex Hormones on the Maturation and Function of Human Dendritic CellsAMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 3 2009Sabine E. Segerer Problem, During pregnancy, the immune and the endocrine system cooperate to ensure that the fetal allograft develops without eliciting a maternal immune response. This is presumably in part achieved by dendritic cells (DCs) that play a dominant role in maintaining peripheral tolerance. In this study, we investigated whether female sex hormones, such as human chorionic gonadotropin (hCG), progesterone (Prog), and estradiol (E2), which are highly elevated during pregnancy, induce the differentiation of DCs into a tolerance-inducing phenotype. Methods/Results, Immature DCs were generated from blood-derived monocytes and differentiated in the presence of hCG, Prog, E2, or Dexamethasone (Dex) as a control. Unlike Dex, female sex hormones did not prevent the upregulation of surface markers characteristic for mature DCs, such as CD40, CD83, and CD86, except for hCG, which inhibited HLA-DR expression. Similarly, hCG, Prog, and E2 had any impact on neither the rearrangement of the F-actin cytoskeleton nor the enhanced chemokine secretion following DC maturation, both of which were strongly altered by Dex. Nevertheless, the T-cell stimulatory capacity of DCs was significantly reduced after hCG and E2 exposure. Conclusion, Our findings suggest that the female sex hormones hCG and E2 inhibit the T-cell stimulatory capacity of DCs, which may help in preventing an allogenic T-cell response against the embryo. [source] Monocyte Infiltration and Kidney Allograft Dysfunction During Acute RejectionAMERICAN JOURNAL OF TRANSPLANTATION, Issue 3 2008R. Girlanda Multiple cell types infiltrate acutely rejecting renal allografts. Typically, monocytes and T cells predominate. Although T cells are known to be required for acute rejection, the degree to which monocytes influence this process remains incompletely defined. Specifically, it has not been established to what degree monocytes impact the clinical phenotype of rejection or how their influence compares to that of T cells. We therefore investigated the relative impact of T cells and monocytes by correlating their presence as measured by immunohistochemical staining with the magnitude of the acute change in renal function at the time of biopsy in 78 consecutive patients with histological acute rejection. We found that functional impairment was strongly associated with the degree of overall cellular infiltration as scored using Banff criteria. However, when cell types were considered, monocyte infiltration was quantitatively associated with renal dysfunction while T-cell infiltration was not. Similarly, renal tubular stress, as indicated by HLA-DR expression, increased with monocyte but not T-cell infiltration. These data suggest that acute allograft dysfunction is most closely related to monocyte infiltration and that isolated T-cell infiltration has less acute functional impact. This relationship may be useful in assigning acute clinical relevance to biopsy findings. [source] HLA-DR expression and differential trafficking of monocyte subsets following low to intermediate risk surgery,ANAESTHESIA, Issue 1 2010J. M. Handy Summary Reduced HLA-DR expression on monocytes has been suggested as a predictive marker of immunosuppression following very high risk surgery, but there are few reports in lower risk surgery. In 32 patients undergoing low to intermediate risk surgery, blood samples were analysed by flow cytometry for HLA-DR expression and numbers in both CD14high and CD14lowCD16+ monocyte subsets. The numbers of CD14high monocytes increased at 24 h (mean (SD), 5.0 (2.2) vs 7.6 (3.9) × 105 cells.ml,1; p < 0.01) while CD14lowCD16+ monocytes decreased (0.68 (0.36) vs 0.44 (0.36) × 105 cells.ml,1; p < 0.01). HLA-DR expression was significantly reduced in both subsets by 24 h (mean (SD) fluorescent intensity 440 (310) vs 160 (130) for CD14high and 1000 (410) vs 560 (380) for CD14lowCD16+ subsets; p < 0.01). This reduction of monocyte HLA-DR expression 24 h following lower risk surgery raises questions about the purported clinical utility of this biomarker as an early predictor of postoperative complications. Our results also suggest that surgery induces significant trafficking (i.e. mobilisation, margination and extravasation) of monocyte subsets, and that monocyte HLA-DR depression is the result of a down-regulatory phenomenon (decreased protein expression on each cell) rather than the differential trafficking of monocyte subsets. [source] Hypoxia modulates phenotype, inflammatory response, and leishmanial infection of human dendritic cellsAPMIS, Issue 2 2010MAIRA CEGATTI BOSSETO Bosseto MC, Palma PVB, Covas DT, Giorgio S. Hypoxia modulates phenotype, inflammatory response, and leishmanial infection of human dendritic cells. APMIS 2010; 118: 108,14. Development of hypoxic areas occurs during infectious and inflammatory processes and dendritic cells (DCs) are involved in both innate and adaptive immunity in diseased tissues. Our group previously reported that macrophages exposed to hypoxia were infected with the intracellular parasite Leishmania amazonensis, but showed reduced susceptibility to the parasite. This study shows that although hypoxia did not alter human DC viability, it significantly altered phenotypic and functional characteristics. The expression of CD1a, CD80, and CD86 was significantly reduced in DCs exposed to hypoxia, whereas CD11c, CD14, CD123, CD49 and HLA-DR expression remained unaltered in DCs cultured in hypoxia or normoxia. DC secretion of IL-12p70, the bioactive interleukin-12 (IL-12), a cytokine produced in response to inflammatory mediators, was enhanced under hypoxia. In addition, phagocytic activity (Leishmania uptake) was not impaired under hypoxia, although this microenviroment induced infected DCs to reduce parasite survival, consequently controlling the infection rate. All these data support the notion that a hypoxic microenvironment promotes selective pressure on DCs to assume a phenotype characterized by pro-inflammatory and microbial activities in injured or inflamed tissues and contribute to the innate immune response. [source] Altered phenotype and function of dendritic cells in children with type 1 diabetesCLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 2 2005F. Angelini Summary The importance of dendritic cells (DC) in the activation of T cells and in the maintenance of self-tolerance is well known. We investigated whether alterations in phenotype and function of DC may contribute to the pathogenesis of Type 1 diabetes (T1DM). Mature DC (mDC) from 18 children with T1DM and 10 age-matched healthy children were tested. mDC, derived from peripheral blood monocytes cultured for 6 days in presence of interleukin (IL)-4 and granulocyte-macrophage colony stimulating factor (GM-CSF) and stimulated with lipopolysaccharide (LPS) for the last 24 h, were phenotyped for the expression of the co-stimulatory molecules B7·1 and B7·2. In six patients and six controls allogenic mixed leucocyte reaction (AMLR) was performed using mDC and cord blood-derived naive T cells at a DC/T naive ratio of 1 : 200. Proliferation was assessed on day 7 by [3H]-thymidine incorporation assay. Mature DC derived from patients showed, compared with controls, a reduced expression of B7·1 [mean of fluorescence intensity (MFI): 36·2 ± 14·3 versus 72·9 ± 34·5; P = 0·004] and B7·2 (MFI: 122·7 ± 67·5 versus 259·6 ± 154·1; P = 0·02). We did not find differences in the HLA-DR expression (P = 0·07). Moreover, proliferative response of allogenic naive T cells cultured with mDC was impaired in the patients (13471 ± 9917·2 versus 40976 ± 24527·2 cpm, P = 0·04). We also measured IL-10 and IL-12 concentration in the supernatant of DC cultures. Interestingly, we observed in the patients a sevenfold higher level of IL-10 (P = 0·07) and a ninefold lower level of IL-12 (P = 0·01). Our data show a defect in the expression of the co-stimulatory molecules and an impairment of DC priming function, events that might contribute to T1DM pathogenesis. [source] HLA-DR expression on lymphocyte subsets as a marker of disease activity in patients with systemic lupus erythematosusCLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 3 2001J. F. Viallard A major problem in the management of SLE patients is to predict a flare or to distinguish between active and quiescent disease. Serological markers are widely used to assess disease activity, but many patients have close to or normal values for these parameters while exhibiting obvious disease-related signs and symptoms. This study aimed to determine which serological parameters, among ESR, ANA and anti-dsDNA antibody titres, CH50 and the HLA-DR expression on circulating T-lymphocyte subsets, best reflected the development of SLE flares. Sixty SLE patients were included, 34 with quiescent disease throughout the entire follow-up period and 26 who experienced an SLE flare defined as having active disease. According to univariate analysis, all parameters were significantly higher for patients with active disease, with the percentage of CD8+DR+ cells being the most significant parameter (P = 10,7). Multivariate logistic regression analysis identified three independent variables enabling the identification of a lupus flare: CH50, the CD8+DR+ and CD4+DR+ cell percentages among total lymphocytes. The CD8+DR+ cell percentage is the biological parameter most significantly associated with a flare (P < 0·001), even more powerful than CH50 (P < 0·01). HLA-DR expression on CD8+ lymphocytes clearly coincided with disease evolution in seven patients enrolled as having quiescent disease, but who experienced one flare during follow-up that subsequently resolved. The percentage of circulating CD8+DR+ lymphocytes appears to be a biological marker which accurately reflects disease activity. A larger prospective study is needed to demonstrate the real efficacy of this marker in predicting an exacerbation in SLE patients. [source] |