H Time Periods (h + time_period)

Distribution by Scientific Domains


Selected Abstracts


Diel spawning periodicity of red snapper Lutjanus campechanus in the northern Gulf of Mexico

JOURNAL OF FISH BIOLOGY, Issue 3 2006
M. W. Jackson
Ovaries of red snapper Lutjanus campechanus were examined histologically to determine rates of oocyte maturation, diel spawning periodicity and whether lunar cycle influenced spawning rhythm. Hydration of red snapper oocytes began during the mid-morning hours; c. 5 h was necessary for oocytes to become fully hydrated and ovulation occurred no more than 5 h after oocytes attained full hydration. Appearance of fresh postovulatory follicles after 1330 hours and the absence of hydrated oocytes after 1830 hours signified that red snapper spawning occurred during this 5 h period. In addition, evidence of a peak in spawning was seen near 1600 hours. Postovulatory follicles degenerated within a 24 h time period. A lunar spawning cycle was not evident. [source]


Sublethal responses of wolf spiders (Lycosidae) to organophosphorous insecticides

ENVIRONMENTAL TOXICOLOGY, Issue 5 2002
S. Van Erp
Abstract The activities of cholinesterase (ChE) and glutathione S -transferase (GST) enzymes were assessed in the wolf spider (Lycosa hilaris) as biomarkers of organophosphate contamination in agricultural ecosystems. Spiders were exposed to simulated field rates of two commercially available organophosphorous insecticides [Basudin (diazinon) and Lorsban (chlorpyrifos)] under laboratory conditions. In terms of survival, chlorpyrifos and diazinon were more toxic to male than to female wolf spiders, but gender-specific differences in ChE activities were not evident. Cholinesterase activity in male spiders was inhibited to 14% and 61% of control activity by Basudin and Lorsban, respectively. Gluthathione S -transferase activity was not affected by either pesticide. Mortality and biomarker responses in the wolf spider were further investigated following the application of Basudin to pasture. Wolf spiders were deployed into field mesocosms; after 24 h mortality was 40%, and surviving spiders displayed significant inhibition of ChE activity (87%) compared with controls. Cholinesterase activity in spiders exposed for subsequent 24- or 48-h time periods was monitored until it returned to control levels 8 days post-application. Inhibition of ChE activity after a single application of Basudin indicate the potential use of this enzyme in wolf spiders as a biomarker for evaluating organophosphate contamination. © 2002 Wiley Periodicals, Inc. Environ Toxicol 17: 449,456, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/tox.10078 [source]


Diel variation in feeding rate and prey composition of herring and mackerel in the southern Gulf of St Lawrence

JOURNAL OF FISH BIOLOGY, Issue 5 2003
E. Darbyson
Diel feeding patterns of herring Clupea harengus and mackerel Scomber scombrus in the southern Gulf of St Lawrence were examined based on samples obtained by midwater trawling between 19 and 26 June 2001. Within 3 h time periods, stomach contents tended to be more similar between fish from the same tow than between fish from different tows. Thus, in contrast to previous diet studies, which have used individual fish stomachs as independent observations, tow was used as the experimental unit in statistical analyses in this study. Diel patterns in stomach fullness were identified using generalized additive models. Two peaks in stomach fullness occurred for herring, one in the morning and the other in the evening. Mackerel showed an increase in feeding intensity throughout the day with a peak in mid-afternoon. The diel changes in stomach contents suggested rapid gastric evacuation rates for both species, especially for herring. The estimate of the instantaneous evacuation rate for herring was twice that for mackerel. Calanus copepods (mainly C. hyperboreus), fishes (mainly capelin Mallotus villosus) and euphausiids were the main prey found in the stomachs of both species. Calanus copepods dominated the diet of herring regardless of time period. They also dominated the diet of mackerel during the late afternoon, evening and night while fishes and euphausiids were dominant during the morning and early afternoon. These diel patterns emphasize the need for sampling throughout the day and night in order to estimate ration and diet composition for bioenergetic and ecosystem models. [source]


In Vitro Determination of Generation Times for Entodinium exiguum, Ophryoscolex purkynjei and Eudiplodinium maggii

THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 3 2004
BURK A. DEHORITY
ABSTRACT. Most previously reported generation times for rumen ciliate protozoa are longer than would be required to prevent their being flushed out of the rumen. In an earlier study from this lab, using a sequential transfer procedure, generation times between 12 and 13 h were determined for both Epidinium caudatum and Entodinium caudatum. This would permit these species to be maintained in a rumen with a fluid volume turnover rate as rapid as twice a day. In this study, generation times were estimated for Entodinium exiguum (13.2 h), Eudiplodinium maggii (26.8 h), and Ophryoscolex purkynjei (29 h), by sequential transfer at both 12 and 24 h time periods. The generation time for E. exiguum is lower than reported for this and other Entodinium species as determined by logarithmic growth from a small inoculum, but similar to that obtained for Ent. caudatum using sequential transfer. Eudiplodinium maggii and O. purkynjei generation times are similar to previous estimates of 24- and 24,48 h, respectively. However, it was observed that after an adaptation period of 36 to 48 h (generally 3,4 transfers) cell concentrations decreased and generation times were markedly decreased, i.e. 12.2 h for Ent. exiguum, 15.0 h for E. maggii and 12.8 h for O. purkynjei. In a separate study, varying both the concentration of Epidinium and the quantity of substrate fed per cell had no effect on generation time. [source]