Home About us Contact | |||
H Hypoxia (h + hypoxia)
Selected Abstracts7-Hydroxylated epiandrosterone (7-OH-EPIA) reduces ischaemia-induced neuronal damage both in vivo and in vitroEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2003Ashley K. Pringle Abstract Recent evidence suggests that steroids such as oestradiol reduce ischaemia-induced neurodegeneration in both in vitro and in vivo models. A cytochrome P450 enzyme termed cyp7b that 7-hydroxylates many steroids is expressed at high levels in brain, although the role of 7-hydroxylated steroids is unknown. We have tested the hypothesis that the steroid-mediated neuroprotection is dependent on the formation of 7-hydroxy metabolites. Organotypic hippocampal slice cultures were prepared from Wistar rat pups and maintained in vitro for 14 days. Cultures were then exposed to 3 h hypoxia and neuronal damage assessed 24 h later using propidium iodide fluorescence as a marker of cell damage. Neurodegeneration occurred primarily in the CA1 pyramidal cell layer. The steroids oestradiol, dehydroepiandrosterone and epiandrosterone (EPIA) were devoid of neuroprotective efficacy when present at 100 nm pre-, during and post-hypoxia. The 7-hydroxy metabolites of EPIA, 7,-OH-EPIA and 7,-OH-EPIA significantly reduced neurotoxicity at 100 nm and 10 nm. 7,-OH-EPIA was also neuroprotective in two in vivo rat models of cerebral ischaemia: 0.1 mg/kg 7,-OH-EPIA significantly reduced hippocampal cell loss in a model of global forebrain ischaemia, whereas 0.03 mg/kg was neuroprotective in a model of focal ischaemia even when administration was delayed until 6 h after the onset of ischaemia. Taken together, these data demonstrate that 7-hydroxylation of steroids confers neuroprotective efficacy, and that 7,-OH-epiandrosterone represents a novel class of neuroprotective compounds with potential for use in acute neurodegenerative diseases. [source] Differential regulation of trophic and proinflammatory microglial effectors is dependent on severity of neuronal injuryGLIA, Issue 3 2008Aaron Y. Lai Abstract Microglial activation has been reported to promote neurotoxicity and also neuroprotective effects. A possible contributor to this dichotomy of responses may be the degree to which proximal neurons are injured. The aim of this study was to determine whether varying the severity of neuronal injury influenced whether microglia were neuroprotective or neurotoxic. We exposed cortical neuronal cultures to varying degrees of hypoxia thereby generating mild (<20% death, 30min hypoxia), moderate (40,60% death, 2 h hypoxia), or severe (>70% death, 6 h hypoxia) injuries. Twenty-four hours after hypoxia, the media from the neuronal cultures was collected and incubated with primary microglial cultures for 24 h. Results showed that the classic microglial proinflammatory mediators including inducible nitric oxide synthase, tumor necrosis factor ,, and interleukin-1-, were upregulated only in response to mild neuronal injuries, while the trophic microglial effectors brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor were upregulated in response to all degrees of neuronal injury. Microglia stimulated with media from damaged neurons were co-cultured with hypoxic neurons. Microglia stimulated by moderate, but not mild or severe damage were neuroprotective in these co-cultures. We also showed that the severity-dependent phenomenon was not related to autocrine microglial signaling and was dependent on the neurotransmitters released by neurons after injury, namely glutamate and adenosine 5,-triphosphate. Together our results show that severity of neuronal injury is an important factor in determining microglial release of "toxic" versus "protective" effectors and the resulting neurotoxicity versus neuroprotection. © 2007 Wiley-Liss, Inc. [source] Rapid loss of motor nerve terminals following hypoxia,reperfusion injury occurs via mechanisms distinct from classic Wallerian degenerationJOURNAL OF ANATOMY, Issue 6 2008Becki Baxter Abstract Motor nerve terminals are known to be vulnerable to a wide range of pathological stimuli. To further characterize this vulnerability, we have developed a novel model system to examine the response of mouse motor nerve terminals in ex vivo nerve/muscle preparations to 2 h hypoxia followed by 2 h reperfusion. This insult induced a rapid loss of neurofilament and synaptic vesicle protein immunoreactivity at pre-synaptic motor nerve terminals but did not appear to affect post-synaptic endplates or muscle fibres. The severity of nerve terminal loss was dependent on the age of the mouse and muscle type: in 8,12-week-old mice the predominantly fast-twitch lumbrical muscles showed an 82.5% loss, whereas the predominantly slow-twitch muscles transversus abdominis and triangularis sterni showed a 57.8% and 27.2% loss, respectively. This was contrasted with a > 97% loss in the predominantly slow-twitch muscles from 5,6-week-old mice. We have also demonstrated that nerve terminal loss occurs by a mechanism distinct from Wallerian degeneration, as the slow Wallerian degeneration (Wlds) gene did not modify the extent of nerve terminal pathology. Together, these data show that our new model of hypoxia,reperfusion injury is robust and repeatable, that it induces rapid, quantitative changes in motor nerve terminals and that it can be used to further examine the mechanisms regulating nerve terminal vulnerability in response to hypoxia,reperfusion injury. [source] Selective induction of mucin-3 by hypoxia in intestinal epitheliaJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2006Nancy A. Louis Abstract Epithelial cells line mucosal surfaces (e.g., lung, intestine) and critically function as a semipermeable barrier to the outside world. Mucosal organs are highly vascular with extensive metabolic demands, and for this reason, are particularly susceptible to diminished blood flow and resultant tissue hypoxia. Here, we pursue the hypothesis that intestinal barrier function is regulated in a protective manner by hypoxia responsive genes. We demonstrate by PCR confirmation of microarray data and by avidin blotting of immunoprecipitated human Mucin 3 (MUC3), that surface MUC3 expression is induced in T84 intestinal epithelial cells following exposure to hypoxia. MUC3 RNA is minimally detectable while surface protein expression is absent under baseline normoxic conditions. There is a robust induction in both the mRNA (first evident by 8 h) and protein expression, first observed and maximally expressed following 24 h hypoxia. This is followed by a subsequent decline in protein expression, which remains well above baseline at 48 h of hypoxia. Further, we demonstrate that this induction of MUC3 protein is associated with a transient increase in the barrier restorative peptide, intestinal trefoil factor (ITF). ITF not only colocalizes with MUC3, by confocal microscopy, to the apical surface of T84 cells following exposure to hypoxia, but is also found, by co-immunoprecipitation, to be physically associated with MUC3, following 24 h of hypoxia. In exploration of the mechanism of hypoxic regulation of mucin 3 expression, we demonstrated by luciferase assay that the full-length promoter for mouse Mucin 3 (Muc3) is hypoxia-responsive with a 5.08,±,1.76-fold induction following 24 h of hypoxia. Furthermore, analysis of both the human (MUC3A) and mouse (Muc3) promoters revealed potential HIF-1 binding sites which were shown by chromatin immunoprecipitation to bind the pivotal hypoxia-regulating transcription factor HIF-1,. Taken together, these studies implicate the HIF-1, mediated hypoxic induced expression of mucin 3 and associated ITF in the maintenance of intestinal barrier function under hypoxic conditions. J. Cell. Biochem. 99: 1616,1627, 2006. © 2006 Wiley-Liss, Inc. [source] Intrinsic and extrinsic erythropoietin enhances neuroprotection against ischemia and reperfusion injury in vitroJOURNAL OF NEUROCHEMISTRY, Issue 4 2006Ruiqin Liu Abstract This study was designed to investigate the neuroprotective effect of intrinsic and extrinsic erythropoietin (EPO) against hypoxia/ischemia, and determine the optimal time-window with respect to the EPO-induced neuroprotection. Experiments were conducted using primary mixed neuronal/astrocytic cultures and neuron-rich cultures. Hypoxia (2%) induces hypoxia-inducible factor-1, (HIF-1,) activity followed by strong EPO expression in mixed cultures and weak expression in neuron-rich cultures as documented by both western blot and RT,PCR. Immunoreactive EPO was strongly detected in astrocytes, whereas EPOR was only detected in neurons. Neurons were significantly damaged in neuron-rich cultures but were distinctly rescued in mixed cultures. Application of recombinant human EPO (rhEPO) (0.1 U/mL) within 6 h before or after hypoxia significantly increased neuronal survival compared with no rhEPO treatment. Application of rhEPO after onset of reoxygenation achieved the maximal neuronal protection against ischemia/reperfusion injury (6 h hypoxia followed 24 h reoxygenation). Our results indicate that HIF-1, induces EPO gene released by astrocytes and acts as an essential mediator of neuroprotection, prove the protective role of intrinsic astrocytic-neuronal signaling pathway in hypoxic/ischemic injury and demonstrate an optimal therapeutic time-window of extrinsic rhEPO in ischemia/reperfusion injury in vitro. The results point to the potential beneficial effects of HIF-1, and EPO for the possible treatment of stroke. [source] |