H Fermentation (h + fermentation)

Distribution by Scientific Domains


Selected Abstracts


Batch cooling crystallization of xylitol produced by biotechnological route

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 3 2009
Ernesto Acosta Martínez
Abstract BACKGROUND: This work deals with the xylitol production by biotechnological routes emphasizing the purification process using crystallization. RESULTS: Xylitol volumetric productivity of 0.665 g L,1 h,1 and yield of 0.7024 g g,1 were obtained after 92 h fermentation. The fermented broth (61.3 g L,1 xylitol) was centrifuged, treated and concentrated obtain a syrup (745.3 g L,1 xylitol) which was crystallized twice, xylitol crystals with 98.5,99.2% purity being obtained. CONCLUSION: The hypothetical distribution obtained permits the determination of modeling parameters, which make possible the estimation of crystal dominant size from different initial experimental conditions. Copyright © 2008 Society of Chemical Industry [source]


Effect of Combining Proteolysis and Lactic Acid Bacterial Fermentation on the Characteristics of Minced Mackerel

JOURNAL OF FOOD SCIENCE, Issue 3 2005
Li-Jung Yin
ABSTRACT: To improve the quality of fish muscle, mackerel muscle protein was hydrolyzed by proteases from Aspergillus oryzae, and then fermented by lactic acid bacteria (LAB). The highest protease activities were obtained from A. oryzae after 72 h incubation at 25°C. Acidic protease activity was much higher than neutral and alkaline proteases. SDS-PAGE indicated the degradation of muscle proteins after 1 or 2 h hydrolysis by A. oryzae proteases at 50°C. During 48 h fermentation by Pediococcus pentosaceus L and S at 37°C, rapid growth of LAB, decline in pH, and suppression in the growth of microflora, Enterobacteriaceae, Staphylococcus, and Pseudomonas, occurred while increases in whiteness, nonprotein nitrogen, sensory quality, and free amino acids were observed. These data suggested that the acceptability of LAB -fermented mackerel hydrolysates could be substantially improved. [source]


Characterization of fermented black soybean natto inoculated with Bacillus natto during fermentation

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 7 2010
Yongjin Hu
Abstract BACKGROUND: To make nutrients more accessible and further increase biological activity, cooked black soybeans were inoculatedwith Bacillus natto and fermented at 37 °C for 48 h. The changes in physiochemical properties of fermented black soybean natto were investigated. RESULTS: The inoculation procedure significantly increased moisture, viscosity, color, polyphenol compounds and anthocyanin, and significantly decreased hardness after 48 h fermentation. Fibrinolytic and caseinolytic protease, ,-glucosidase activities, TCA-soluble nitrogen, and ammonia nitrogen contents in the inoculated samples significantly increased as fermentation time increased. Genistin and daidzin concentrations gradually decreased with increased fermentation time. However, genistein and daidzein increased with fermentation time, which reached 316.8 and 305.2 µg g,1 during 48 h fermentation, respectively. DPPH radical scavenging activities of the fermented black soybeans increased linearly with fermentation time and concentration. Compared with the soaked black soybeans and cooked black soybeans, the fermented black soybeans with B. natto resulted in higher scavenging activity towards DPPH radicals, which correlated well with the content of total phenols (r = 0.9254, P < 0.05) and aglycone isoflavone (r = 0.9861, P < 0.05). CONCLUSION: Black soybean natto fermented by B. natto has the potential to become a functional food because of its high antioxidant activity. Copyright © 2010 Society of Chemical Industry [source]


Effect of adding an anaerobic fungal culture isolated from a wild blue bull (Boselophus tragocamelus) to rumen fluid from buffaloes on in vitro fibrolytic enzyme activity, fermentation and degradation of tannins and tannin-containing Kachnar tree (Bauhinia variegata) leaves and wheat straw

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 2 2006
Shyam S Paul
Abstract The study investigated the effects of adding an anaerobic fungus (Piromyces sp FNG5; isolated from the faeces of a wild blue bull) to the rumen fluid of buffaloes consuming a basal diet of wheat straw and concentrates on in vitro enzyme activities, fermentation and degradation of tannins and tannin-rich tree leaves and wheat straw. In experiment 1, strained rumen fluid was incubated for 24 and 48 h, in quadruplicate, with or without fungal culture using condensed tannin-rich Bauhinia variegata leaves as substrates. In experiment 2, in vitro incubation medium containing wheat straw and different concentrations of added tannic acid (0,1.2 mg mL,1) were incubated for 48 h, in quadruplicate, with strained buffalo rumen fluid with or without fungal culture. In experiment 3, tolerance of the fungal isolate to tannic acid was tested by estimating fungal growth in pure culture medium containing different concentrations (0,50 g L,1) of tannic acid. In in vitro studies with Bauhinia variegata tree leaves, addition of the fungal isolate to buffalo strained rumen liquor resulted in significant (P < 0.01) increase in neutral detergent fibre (NDF) digestibility and activities of carboxymethyl cellulase (P < 0.05) and xylanase (P < 0.05) at 24 h fermentation. There was 12.35% increase (P < 0.01) in condensed tannin (CT) degradation on addition of the fungal isolate at 48 h fermentation. In in vitro studies with wheat straw, addition of the fungus caused an increase in apparent digestibility (P < 0.01), true digestibility (P < 0.05), NDF digestibility (P < 0.05), activities of carboxymethyl cellulase (P < 0.001), ,-glucosidase (P < 0.001), xylanase (P < 0.001), acetyl esterase (P < 0.001) and degradation of tannic acid (P < 0.05). Rumen liquor from buffaloes which had never been exposed to tannin-containing diet had been found to have substantial inherent tannic acid-degrading ability (degraded 55.3% of added tannic acid within 24 h of fermentation). The fungus could tolerate tannic acid concentration up to 20 g L,1 in growth medium. The results of this study suggest that introduction of an anaerobic fungal isolate with superior lignocellulolytic activity isolated from the faeces of a wild herbivore may improve fibre digestion from tannin-containing feeds and degradation of tannins in the rumen of buffaloes. Copyright © 2005 Society of Chemical Industry [source]