Home About us Contact | |||
H EC50 (h + ec50)
Selected AbstractsToxicity reduction of metal pyrithiones by near ultraviolet irradiationENVIRONMENTAL TOXICOLOGY, Issue 4 2006Hideo Okamura Abstract Zinc pyrithione (ZnPT) or copper pyrithione (CuPT) have been effectively used as ship-antifouling agents, as an alternative to organotin compounds. Because of their instability in light and a lack of suitable analytical procedures, there is little data on their residue levels in environmental matrices. It is possible to investigate the fate of such compounds by toxicity alteration with certain treatments. The purpose of this study was to evaluate the degradation of pyrithiones through toxicity reduction by near ultraviolet (UV-A) irradiation. Metal pyrithiones dissolved in acetonitrile were irradiated with a UV-A lamp for 0, 0.5, 1, and 2 h, and were subjected to UV spectral measurement and toxicity evaluation using both sea urchin and freshwater rotifer bioassays. For the bioassays, photolyzed samples were dissolved in dimethyl sulfoxide after evaporation of the acetonitrile. The changes in UV spectra of photolyzed ZnPT or CuPT showed a time-dependent degradation, and the UV spectra at 2 h irradiation suggested substantial decomposition. Toxicities of ZnPT and CuPT were 12 and 5 ,g/L as 24 h LC50 to the survival of rotifers and 10,6 ng/L and 2.3 ng/L as 27 h EC50 to normal pluteus formation, respectively. By evaporation of the acetonitrile, the EC50 of ZnPT was 2.2 ng/L, which was the same as that of CuPT. The EC50s of ZnPT or CuPT for both species increased with longer irradiation times. Photolyzed ZnPT or CuPT demonstrated substantial degradation in the UV spectra, but possessed marked toxicity, which is probably due to toxic degradation products. One reason why photolyzed CuPT was toxic to rotifers was explained by the high toxicity of copper ions formed by UV-A irradiation. © 2006 Wiley Periodicals, Inc. Environ Toxicol 21: 305,309, 2006. [source] Response of the freshwater alga Chlorella vulgaris to trichloroisocyanuric acid and ciprofloxacin,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2008Xiangping Nie Abstract The effects of trichloroisocyanuric acid (TCCA) and ciprofloxacin (CPFX) on the freshwater alga Chlorella vulgaris were assessed by toxicity bioassays and by the values of biomarkers in phase I and phase II. The biomarkers included growth rate, concentration of chlorophyll a, activities of 7-ethoxyresorufin- O -dealkylases (EROD), glutathione S -transferase (GST), catalase (CAT), and total glutathione (GSH). Ciprofloxacin was a weaker growth inhibitor than TCCA but, at a concentration of greater than 12.5 mg/L, decreased the growth of C. vulgaris. Concentration of chlorophyll a showed a similar trend. The 96-h median effective concentration (EC50; i.e., 50% reduction in growth relative to the control) of CPFX was 20.6 mg/L. Trichloroisocyanuric acid was a strong growth inhibitor and, at concentrations of greater than 0.80 mg/L, caused 100% inhibition on 24-h exposure. The 96-h EC50 of TCCA was 0.313 mg/L. Ciprofloxacin and TCCA affected the phase I and phase II enzyme activities differently. On exposure to CPFX, both EROD and GSH decreased at low CPFX concentrations (<5.0 mg/L) and increased at high CPFX concentrations (>12.5 mg/L), and CAT and GST exhibited induction at low concentrations and inhibition at high concentrations. In TCCA exposure, GST activity was significantly stimulated, and GSH concentration was increased. Catalase activity increased only at TCCA concentrations of greater than 0.12 mg/L, and no change in EROD activity was observed. [source] Copper toxicity in relation to surface water-dissolved organic matter: Biological effects to Daphnia magnaENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2004Kees J.M. Kramer Abstract Water quality standards for copper are usually stated in total element concentrations. It is known, however, that a major part of the copper can be bound in complexes that are biologically not available. Natural organic matter, such as humic and fulvic acids, are strong complexing agents that may affect the bioavailable copper (Cu2+) concentration. The aim of this study was to quantify the relation between the concentration of dissolved natural organic matter and free Cu2+ in surface waters, and the biological effect, as measured in a standardized ecotoxicological test (48 h-median effective concentration [EC50] Daphnia magna, mobility). Six typical Dutch surface waters and an artificial water, ranging from 0.1 to 22 mg/L dissolved organic carbon (DOC), were collected and analyzed quarterly. Chemical speciation modeling was used as supporting evidence to assess bioavailability. The results show clear evidence of a linear relation between the concentration of dissolved organic carbon (in milligrams DOC/L) and the ecotoxicological effect (as effect concentration, EC50, expressed as micrograms Cu/L): 48-h EC50 (Daphnia, mobility) = 17.2 × DOC + 30.2 (r2 = 0.80, n = 22). Except for a brook with atypical water quality characteristics, no differences were observed among water type or season. When ultraviolet (UV)-absorption (380 nm) was used to characterize the dissolved organic carbon, a linear correlation was found as well. The importance of the free copper concentration was demonstrated by speciation calculations: In humic-rich waters the free Cu2+ concentration was estimated at ,10,11 M, whereas in medium to low dissolved organic carbon waters the [Cu2+] was ,10,10 M. Speciation calculations performed for copper concentrations at the effective concentration level (where the biological effect is considered the same) resulted in very similar free copper concentrations (,10,8 M Cu) in these surface waters with different characteristics. These observations consistently show that the presence of organic matter decreases the bioavailability, uptake, and ecotoxicity of copper in the aquatic environment. It demonstrates that the DOC content must be included in site-specific environmental risk assessment for trace metals (at least for copper). It is the quantification of the effects described that allows policy makers to review the criteria for copper in surface waters. [source] Acute and Chronic Effects of Nitrite on White Shrimp, Litopenaeus vannamei, Cultured in Low-Salinity Brackish WaterJOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 3 2004Amit Gross The marine white shrimp Litopenaeus vannamei is widely cultured. Recently, farmers have begun to culture this shrimp in low-salinity brackish water (< 6 g/L). The intensification of shrimp culture often results in occurrences of elevated nitrite concentration during the growing season. Nitrite is toxic to shrimp and exposure to high concentrations may cause retarded growth and mortalities. The current study was aimed at investigating the acute and chronic toxicity of nitrite to L. vannamei grown in low-salinity (2 g/L) brackish water. Studies of the 96-h EC50 and LC50 values of nitrite were performed to determine the acute toxicity, and an aquarium growth study (2 d post exposure to elevated nitrite concentrations) was conducted to evaluate the chronic effects of nitrite on shrimp production. The 96-h EC50 and LC50 values for juvenile L. vannamei grown in water of 2 g/L salinity was about 9 mg/L NO2 -N, suggesting a safe concentration for shrimp production in ponds to be less than 0.45 mgIL NO2 -N. Exposing shrimp to nitrite concentration of 4 mg/L for 2 d reduced their growth but did not affect their survival. [source] |