H9c2 Cells (h9c2 + cell)

Distribution by Scientific Domains


Selected Abstracts


Protective effects of steroids from Allium chinense against H2O2 -induced oxidative stress in rat cardiac H9C2 cells

PHYTOTHERAPY RESEARCH, Issue 3 2010
Gang Ren
Abstract Allium chinense, a traditional herbal medicine, has been used for the treatment of cardiovascular diseases for hundreds of years. In this study, A. chinense steroids (ACSs) including three steroidal glycosides and their parent aglycones were isolated from the bulbs of A. chinense. For the first time, their cardioprotective effects were evaluated in cultured rat cardiac H9C2 cells by pretreatment with ACSs for 24,h before exposure to 0.2,mm H2O2. The results showed the cell viability decreased markedly when H9C2 cells were incubated with 0.2,mm H2O2 alone for 2,h, while the cell lipid peroxidation (estimated by the excessive production of nitric oxide and malondialdehyde) and intracellular free calcium concentration ([Ca2+]i) increased significantly. The addition of 20,,m (below the toxic concentration) of ACSs notably attenuated the cellular injury induced by H2O2. The effects of ACSs in our experiments were similar to those of nimodipine, a clinically applied calcium channel blocker. Preliminary analysis of the structure,activity relationship indicated that ACSs with a spirostane-type skeleton exhibited stronger protection than that with a furostane-type skeleton, and glycosylation of the steroids could substantially lower the protective activities. The above results suggested the protective effects of steroids originated from A. chinense on the oxidative injury of H9C2 cells and ACSs may have potential for preventing cardiac injuries induced by oxidative stress. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Malonyl-CoA decarboxylase (MCD) is differentially regulated in subcellular compartments by 5,AMP-activated protein kinase (AMPK)

FEBS JOURNAL, Issue 13 2004
AMPK by adenoviral gene transfer technique, Studies using H9c2 cells overexpressing MCD
Malonyl-CoA, a potent inhibitor of carnitine pamitoyl transferase-I (CPT-I), plays a pivotal role in fuel selection in cardiac muscle. Malonyl-CoA decarboxylase (MCD) catalyzes the degradation of malonyl-CoA, removes a potent allosteric inhibition on CPT-I and thereby increases fatty acid oxidation in the heart. Although MCD has several Ser/Thr phosphorylation sites, whether it is regulated by AMP-activated protein kinase (AMPK) has been controversial. We therefore overexpressed MCD (Ad.MCD) and constitutively active AMPK (Ad.CA-AMPK) in H9c2 cells, using an adenoviral gene delivery approach in order to examine if MCD is regulated by AMPK. Cells infected with Ad.CA-AMPK demonstrated a fourfold increase in AMPK activity as compared with control cells expressing green fluorescent protein (Ad.GFP). MCD activity increased 40- to 50-fold in Ad.MCD + Ad.GFP cells when compared with Ad.GFP control. Co-expressing AMPK with MCD further augmented MCD expression and activity in Ad.MCD + Ad.CA-AMPK cells compared with the Ad.MCD + Ad.GFP control. Subcellular fractionation further revealed that 54.7 kDa isoform of MCD expression was significantly higher in cytosolic fractions of Ad.MCD + Ad.CA-AMPK cells than of the Ad.MCD +Ad.GFP control. However, the MCD activities in cytosolic fractions were not different between the two groups. Interestingly, in the mitochondrial fractions, MCD activity significantly increased in Ad.MCD + Ad.CA-AMPK cells when compared with Ad.MCD + Ad.GFP cells. Using phosphoserine and phosphothreonine antibodies, no phosphorylation of MCD by AMPK was observed. The increase in MCD activity in mitochondria-rich fractions of Ad.MCD + Ad.CA-AMPK cells was accompanied by an increase in the level of the 50.7 kDa isoform of MCD protein in the mitochondria. This differential regulation of MCD expression and activity in the mitochondria by AMPK may potentially regulate malonyl-CoA levels at sites nearby CPT-I on the mitochondria. [source]


Distinct mechanisms of cardiomyocyte apoptosis induced by doxorubicin and hypoxia converge on mitochondria and are inhibited by Bcl-xL

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 3 2007
Janice LV Reeve
Abstract Hypoxia and doxorubicin can cause cardiotoxicity and loss of myocardial function. These effects are due, in part, to an induction of apoptosis. Herein we identify the apoptotic pathways activated in H9c2 cells in response to hypoxia (O2/N2/CO2, 0.5:94.5:5) and doxorubicin (0.5 ,M). Although the apoptosis induced was accompanied by induction of Fas and Fas ligand, the death receptor pathway was not critical for caspase activation by either stimulus. Hypoxia induced the expression of endoplasmic reticulum (ER) stress mediators and processed ER-resident pro-caspase-12 whereas doxorubicin did not induce an ER stress response. Most importantly, both stimuli converged on mitochondria to promote apoptosis. Accumulation of cytochrome c in the cytosol coincided with the processing of pro-caspase-9 and -3. Increasing the expression of the anti-apoptotic protein Bcl-xL, either by dexamethasone or adenovirus-mediated transduction, protected H9c2 cells from doxorubicin- and hypoxia-induced apoptosis. Bcl-xL attenuated mitochondrial cytochrome crelease and reduced downstream pro-caspase processing and apoptosis. These data demonstrate that two distinct cardiomyocyte-damaging stimuli converge on mitochondria thus presenting this organelle as a potentially important therapeutic target for anti-apoptotic strategies for cardiovascular diseases. [source]


Regulation of dHAND protein expression by all- trans retinoic acid through ET-1/ETAR signaling in H9c2 cells

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2006
Weixin Li
Abstract dHAND is thought to be a cardiac-restricted transcription factor during embryonic development. Vertebrate heart development involves many transcription factors such as Nkx2.5, GATA, and tbx5. All- trans retinoic acid (AtRA), the oxidative metabolite of vitamin A, can regulate the expression of these factors to affect embryonic heart development. However, the action of atRA on the expression of dHAND is rarely reported. To clarify whether atRA regulate the dHAND expression, we exposed cultured H9c2 cells (rat embryonic cardiomyocytes) to atRA and detected the protein expression of dHAND by Western blot analysis. We observed atRA can regulate the dHAND expression in a dose- and time-dependent manner. AtRA also inhibited endothelin-1 (ET-1) expression in a time-dependent manner. Further studies revealed that pretreatment with 10 µM BQ-123, a selective endothelin-1 receptor (ETAR) antagonist, for 2 h can significantly counteract the inhibition of 5 µM atRA treatment for 2 h of dHAND mRNA and protein expression. Taken together, these results suggest that atRA regulates dHAND expression by ET-1/ETAR signal transduction pathway in H9c2 cells. The mechanism of ET-1/ETAR signaling in controlling the level of dHAND protein is to reduce the levels of dHAND mRNA. It is possible for atRA to exert its cardiac teratogenesis during vertebrate embryonic development in this way. J. Cell. Biochem. 99: 478,484, 2006. © 2006 Wiley-Liss, Inc. [source]


ARC protects rat cardiomyocytes against oxidative stress through inhibition of caspase-2 mediated mitochondrial pathway

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2006
Yi-Qiang Zhang
Abstract Apoptosis repressor with a CARD domain (ARC) has been demonstrated to protect heart cells against ischemia/reperfusion (I/R) injury. In this study, we investigated the mechanism by which ARC protects heart cells against oxidative stress. We monitored the extent of apoptosis and activity of multiple components of the intrinsic apoptotic pathway in rat cardiac myoblast cell line H9c2 with either reduced or increased expression of ARC during oxidative stress. Overexpression of ARC-inhibited oxidative stress-induced caspase-2/3 activation, cytochrome c release, and translocation of Bax to mitochondria. Furthermore, phosphorylation of ARC at threonine 149 was found to be critical to its function. ARC containing a T149A mutation failed to translocate to mitochondria, did not inhibit caspase-2 activation, and had a dominant negative effect against the protective effect of endogenous ARC during oxidative stress. In addition, wild-type ARC but not the T149A mutant inhibited cell death induced by overexpression of caspase-2. Using a yeast two-hybrid (YTH) screening approach and co-immunoprecipitation (Co-IP), we found that protein phosphatase 2C (PP2C) interacted with ARC and that PP2C mediated-dephosphorylation of ARC inhibited its anti-apoptotic activity. Eliminating either the N-terminal CARD domain or the C-terminal P/E domain also abolished the anti-apoptotic function of ARC, suggesting that full-length ARC is required for its apoptotic inhibition. These results indicate that ARC plays an important role in protection of H9c2 cells against oxidative stress-induced apoptosis by phosphorylation-dependent suppression of the mitochondria-mediated intrinsic pathway, partially initiated through the activation of caspase-2. J. Cell. Biochem. 99: 575,588, 2006. © 2006 Wiley-Liss, Inc. [source]


Effect of Flavonoids on Daunorubicin-induced Toxicity in H9c2 Cardiomyoblasts

PHYTOTHERAPY RESEARCH, Issue 1 2009
Gabriela Moj
Abstract Daunorubicin (DNR) is one of the most important antitumor agents belonging to the anthracycline group. However, its use is seriously limited by the development of cardiac toxicity. The present study was designed to investigate the effects of quercetin, pycnogenol and naringenin on daunorubicin-induced cytoxicity in H9c2 cells. Protection of H9c2 cardiomyocyte cells was concentration/dose dependent for quercetin > naringenin > pycnogenol = trolox. Quercetin (10,4,10,5 mol/L) after 24 h of co-incubation with DNR significantly increased the cardiomyocyte survival (p < 0.001 and p < 0.05, respectively). A protective effect of other compounds was observed only in the highest concentration/dose used (p < 0.01). After 48 h of incubation quercetin and naringenin significantly decreased daunorubicin-induced cell death at concentrations of 10,4,10,5 mol/L (p < 0.001 and p < 0.01, respectively). The protective effect of pycnogenol and trolox was weaker but significant in the two highest concentrations/doses (p < 0.001 and p < 0.05, respectively). This study also investigated DNR-induced apoptosis and it was shown that both quercetin and naringenin inhibit apoptosis of H9c2 cardiomyocytes cells in vitro. The findings provide evidence that quercetin and naringenin may act as survival factors. The protective effect of flavonoids was compared with that of trolox, a known cardioprotective antioxidant. These results are consistent with the notion that the use of flavonoids may be beneficial in modulating or preventing the cardiotoxicity associated with DNR therapy. Copyright © 2008 John Wiley & Sons, Ltd. [source]


The water extract of Omija protects H9c2 cardiomyoblast cells from hydrogen peroxide through prevention of mitochondrial dysfunction and activation of caspases pathway

PHYTOTHERAPY RESEARCH, Issue 1 2007
Channy Park
Abstract The water extract of Omija (Omija) has been used traditionally in the treatment of ischemic damage of the heart and brain tissues. However, little is known about the mechanism by which it rescues myocardial cells from oxidative stress. This study was designed to investigate the protective mechanisms of Omija on H2O2 -induced cytotoxicity in H9c2 cardiomyoblast cells. Treatment with H2O2 resulted in the death of H9c2 cells, characterized by apparent apoptotic features, including fragmentation of the nucleus and an increase in the sub-G0/G1 fraction of the cell cycle. However, Omija markedly suppressed the apoptotic characteristics of H9c2 cells induced by H2O2. In addition, Omija suppressed the features of mitochondrial dysfunction, including changes in the mitochondrial membrane potential and cytosolic release of cytochrome c in H2O2 -treated cells. Treatment with Omija further inhibited the catalytic activation of caspase-9 and caspase-3 and induction of Fas by H2O2. Taken together, these data indicate that the water extract of Omija protects H9c2 cardiomyoblast cells from oxidative stress of H2O2 through inhibition of mitochondrial dysfunction and activation of intrinsic caspase cascades, including caspase-3 and caspase-9. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Diazoxide acts more as a PKC- , activator, and indirectly activates the mitochondrial KATP channel conferring cardioprotection against hypoxic injury

BRITISH JOURNAL OF PHARMACOLOGY, Issue 8 2006
M-Y Kim
Background and purpose: Diazoxide, a well-known opener of the mitochondrial ATP-sensitive potassium (mitoKATP) channel, has been demonstrated to exert cardioprotective effect against ischemic injury through the mitoKATP channel and protein kinase C (PKC). We aimed to clarify the role of PKC isoforms and the relationship between the PKC isoforms and the mitoKATP channel in diazoxide-induced cardioprotection. Experimental approach: In H9c2 cells and neonatal rat cardiomyocytes, PKC-, activation was examined by Western blotting and kinase assay. Flavoprotein fluorescence, mitochondrial Ca2+ and mitochondrial membrane potential were measured by confocal microscopy. Cell death was determined by TUNEL assay. Key results: Diazoxide (100 ,M) induced translocation of PKC-, from the cytosolic to the mitochondrial fraction. Specific blockade of PKC-, by either ,V1-2 or dominant negative mutant PKC-, (PKC-, KR) abolished the anti-apoptotic effect of diazoxide. Diazoxide-induced flavoprotein oxidation was inhibited by either ,V1-2 or PKC-, KR transfection. Treatment with 5-hydroxydecanoate (5-HD) did not affect translocation and activation of PKC-, induced by diazoxide. Transfection with wild type PKC-, mimicked the flavoprotein-oxidizing effect of diazoxide, and this effect was completely blocked by ,V1-2 or 5-HD. Diazoxide prevented the increase in mitochondrial Ca2+, mitochondrial depolarization and cytochrome c release induced by hypoxia and all these effects of diazoxide were blocked by ,V1-2 or 5-HD. Conclusions and Implications: Diazoxide induced isoform-specific translocation of PKC-, as an upstream signaling molecule for the mitoKATP channel, rendering cardiomyocytes resistant to hypoxic injury through inhibition of the mitochondrial death pathway. British Journal of Pharmacology (2006) 149, 1059,1070. doi:10.1038/sj.bjp.0706922 [source]