H3 Receptor Agonist (h3 + receptor_agonist)

Distribution by Scientific Domains


Selected Abstracts


Endogenous histamine in the medial septum,diagonal band complex increases the release of acetylcholine from the hippocampus: a dual-probe microdialysis study in the freely moving rat

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2002
Lucia Bacciottini
Abstract The effects of histaminergic ligands on both ACh spontaneous release from the hippocampus and the expression of c-fos in the medial septum,diagonal band (MSA-DB) of freely moving rats were investigated. Because the majority of cholinergic innervation to the hippocampus is provided by MSA-DB neurons, we used the dual-probe microdialysis technique to apply drugs to the MSA-DB and record the induced effects in the projection area. Perfusion of MSA-DB with high-KCl medium strongly stimulated hippocampal ACh release which, conversely, was significantly reduced by intra-MSA-DB administration of tetrodotoxin. Histamine or the H2 receptor agonist dimaprit, applied directly to the hippocampus, failed to alter ACh release. Conversely, perfusion of MSA-DB with these two compounds increased ACh release from the hippocampus. Also, thioperamide and ciproxifan, two H3 receptor antagonists, administered into MSA-DB, increased the release of hippocampal ACh, whereas R-,-methylhistamine, an H3 receptor agonist, produced the opposite effect. The blockade of MSA-DB H2 receptors, caused by local perfusion with the H2 receptor antagonist cimetidine, moderated the spontaneous release of hippocampal ACh and antagonized the facilitation produced by H3 receptor antagonists. Triprolidine, an H1 receptor antagonist, was without effect. Moreover, cells expressing c-fos immunoreactivity were significantly more numerous in ciproxifan- or thioperamide-treated rats than in controls, although no colocalization of anti-c-fos and anti-ChAT immunoreactivity was observed. These results indicate a role for endogenous histamine in modulating the cholinergic tone in the hippocampus. [source]


Nasal Allergic Response Mediated by Histamine H3 Receptors in Murine Allergic Rhinitis

THE LARYNGOSCOPE, Issue 10 2005
Muneo Nakaya MD
Abstract Background: Histamine is one of the most important chemical mediators causing nasal allergic symptoms, and H1 receptor antagonist have been used as the treatment first choice in nasal allergy. The presence of H3 receptors has also been determined in the human nasal mucosa, but few studies have investigated the involvement of H3 receptors in nasal allergy. Objective: We used a murine allergic model to investigate the presence of nasal mucosa H3 receptor mRNA and any H3 receptor agonist or antagonist influences on clinical nasal allergic symptoms. Methods: H3 receptor mRNA in nasal mucosa was investigated by reverse-transcription polymerase chain reaction. OVA-sensitized mice were given an intraperitoneal injection of H3 receptor agonist or antagonist, and clinical nasal allergic symptoms were scored over 10 minutes after nasal provocation of OVA. Inhibition of nasal allergic symptoms was also examined using an H1 receptor antagonist alone and using a both an H3 receptor agonist and an H1 receptor antagonist. Results: H3 receptor mRNA was identified in the murine nasal mucosa. The H3 receptor agonist (R)-,-metylhistamine significantly inhibited clinical nasal allergic symptoms of OVA-sensitized mice. The H3 receptor agonist and H1 receptor antagonist inhibited clinical nasal allergic symptoms in the murine allergic model more strongly than the single drug. Conclusion: The foregoing results indicate that H3 receptors are involved in modulation of nasal allergy. H3 receptor agonists can also be useful as a novel therapeutic approach in nasal allergy. Both H3 receptor agonist and H1 receptor antagonist may be more effective than a single drug. [source]


Pharmacological effects of carcinine on histaminergic neurons in the brain

BRITISH JOURNAL OF PHARMACOLOGY, Issue 5 2004
Zhong Chen
Carcinine (, -alanyl histamine) is an imidazole dipeptide. The present study was designed to characterize the pharmacological effects of carcinine on histaminergic activity in the brain and on certain neurobehavior. Carcinine was highly selective for the histamine H3 receptor over H1 or H2 receptor (Ki (,M)=0.2939±0.2188 vs 3621.2±583.9 or 365.3±232.8 ,M, respectively). Carcinine at a dose of 20 mg kg,1 slightly increased histidine decarboxylase (HDC) activity in the cortex (from 0.186±0.069 to 0.227±0.009 pmol mg protein,1 min,1). In addition, carcinine (10, 20, and 50 mg kg,1) significantly decreased histamine levels in mice brain. Like thioperamide, a histamine H3 receptor antagonist, carcinine (20, 50 ,M) significantly increased 5-HT release from mice cortex slices, but had no apparent effect on dopamine release. Carcinine (20 mg kg,1) significantly inhibited pentylenetetrazole-induced kindling. This inhibition was completedly reversed by (R)- , -methylhistamine, a representative H3 receptor agonist, and , -fluromethylhistidine, a selective HDC inhibitor. Carcinine (20 mg kg,1) ameliorated the learning deficit induced by scopolamine. This amelioration was reversed by (R)- , -methylhistamine as evaluated by the passive avoidance test in mice. Like thioperamide, carcinine dose-dependently increased mice locomotor activity in the open-field test. The results of this study provide first and direct evidence that carcinine, as a novel histamine H3 receptor antagonist, plays an important role in histaminergic neurons activation and might be useful in the treatment of certain diseases, such as epilepsy, and locomotor or cognitive deficit. British Journal of Pharmacology (2004) 143, 573,580. doi:10.1038/sj.bjp.0705978 [source]


Nasal Allergic Response Mediated by Histamine H3 Receptors in Murine Allergic Rhinitis

THE LARYNGOSCOPE, Issue 10 2005
Muneo Nakaya MD
Abstract Background: Histamine is one of the most important chemical mediators causing nasal allergic symptoms, and H1 receptor antagonist have been used as the treatment first choice in nasal allergy. The presence of H3 receptors has also been determined in the human nasal mucosa, but few studies have investigated the involvement of H3 receptors in nasal allergy. Objective: We used a murine allergic model to investigate the presence of nasal mucosa H3 receptor mRNA and any H3 receptor agonist or antagonist influences on clinical nasal allergic symptoms. Methods: H3 receptor mRNA in nasal mucosa was investigated by reverse-transcription polymerase chain reaction. OVA-sensitized mice were given an intraperitoneal injection of H3 receptor agonist or antagonist, and clinical nasal allergic symptoms were scored over 10 minutes after nasal provocation of OVA. Inhibition of nasal allergic symptoms was also examined using an H1 receptor antagonist alone and using a both an H3 receptor agonist and an H1 receptor antagonist. Results: H3 receptor mRNA was identified in the murine nasal mucosa. The H3 receptor agonist (R)-,-metylhistamine significantly inhibited clinical nasal allergic symptoms of OVA-sensitized mice. The H3 receptor agonist and H1 receptor antagonist inhibited clinical nasal allergic symptoms in the murine allergic model more strongly than the single drug. Conclusion: The foregoing results indicate that H3 receptors are involved in modulation of nasal allergy. H3 receptor agonists can also be useful as a novel therapeutic approach in nasal allergy. Both H3 receptor agonist and H1 receptor antagonist may be more effective than a single drug. [source]