Altitudinal Gradient (altitudinal + gradient)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


The Temperature Response in the Ring Widths of Phyllocladus Aspleniifolius (Celery,top Pine) Along an Altitudinal Gradient in the Warra LTER Area, Tasmania

GEOGRAPHICAL RESEARCH, Issue 3 2002
K.J. Allen
The temperature response of four Phyllocladus aspleniifolius (Celery,top Pine) sites along an altitudinal gradient within a cool temperate broad leaf forest environment in the southwest of Tasmania, Australia was examined. Although strong evidence of a systematically changing response with elevation could not be found, there was evidence that minimum temperature in particular may be important in determining the altitudinal extent of the species. Climatic responses of the Warra LTER (Long Term Ecological Research) area sites were representative of other known sites in southwestern Tasmania. A link between event years in P. aspleniifolius and warm/dry conditions indicates that these event years may provide a guide to the historical frequency of fire weather in Tasmania's southwest. [source]


Beta diversity of geometrid moths (Lepidoptera: Geometridae) in an Andean montane rainforest

DIVERSITY AND DISTRIBUTIONS, Issue 5 2003
Gunnar Brehm
Abstract. Turnover in species composition of the extremely species-rich family Geometridae (Lepidoptera) was investigated along an elevational gradient ranging from 1040 m to 2677 m above sea level. Moths were sampled using weak light traps (30 W) in three field periods in 1999 and 2000 in an Andean montane rainforest in the province of Zamora-Chinchipe in southern Ecuador. A total of 13 938 specimens representing 1010 species were analysed. Similarities of ensembles of all geometrid moths and of the subfamilies Ennominae and Larentiinae were calculated using the NESS index (with mmax). Ordinations performed using nonmetric multidimensional scaling (NMDS) and correspondence analysis depicted a gradual change of the ensembles along the altitudinal gradient. Extracted ordination scores significantly correlate with altitude (,0.97 , r , ,0.95, P < 0.001) and with ambient air temperature (0.93 , r , 0.97, P < 0.001). Temperature is therefore assumed to be the most important abiotic determinant responsible for the species turnover among the moths. Matrix correlation tests were performed in order to compare faunal matrices with matrices derived from available environmental factors. Both tree diversity and vegetation structure significantly correlate with faunal data, but tree diversity explains considerably more of the data variability (range: Mantel r = 0.81,0.83, P < 0.001) than vegetation structure (range: Mantel r = 0.35, P < 0.005 to r = 0.43, P < 0.001). Tree diversity also changes gradually and scores of the first NMDS dimension are highly significantly correlated with altitude (r = 0.98, P < 0.001). A common underlying factor such as ambient temperature might also be responsible for such vegetation changes. Additionally, simulated model data was developed that assumed a constant turnover of moth species and equal elevational ranges of all species involved. Despite the simplicity of the models, they fit empirical data very well (Mantel r > 0.80 and P < 0.001 in all models). [source]


Soil microbial activity along an arctic-alpine altitudinal gradient from a seasonal perspective

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 5 2008
U. C. M. Löffler
Summary The knowledge on dynamics of soil microbial activity and its correlation to climate and vegetation is still poor but essential for predicting climatic changes scenarios. Seasonal dynamics of soil microbial activity and cell counts were studied along an arctic-alpine altitudinal gradient. The gradient comprised 12 ridges from 1000 to 1600 m altitude. Soil samples were collected during March, May, July and September 2005. The effect of temperature, snow depth and vegetation, all of which changed with altitude, on soil microbial activity and bacterial cell counts was analysed. The potential activities of phosphatase and chitinase were determined using fluorescent 4-methylumbelliferyl labelled analogues. Total and live bacterial cell counts were determined by live-dead-staining. We detected marked differences in soil microbial variables along the altitudinal gradient, forming three major clusters: a low alpine belt, a middle alpine belt, and an intermediate transition zone. Our results demonstrated that more frequent occurrence of shrubs and bryophytes would also increase microbial activity. Furthermore, we detected a clear relation (R2 = 0.6; P < 0.02) between high soil temperatures and greater soil microbial activity during summer. As higher temperatures are predicted to promote shrubs and higher humidity to promote bryophytes we expect microbial activity in dry heath tundra soils will increase with anticipated warmer, and in the case of Scandinavia, more humid climates. We did not find winter microbial activity to be less at snow-free sites than at sites covered by snow up to depths of 30 cm; hence, possible future decreases in snow depth will not result in reduced winter microbial activity. We demonstrate that shrubs support winter microbial activity not only by trapping snow but also directly by increasing the amount of organic carbon. [source]


Recolonisation of natural landslides in tropical mountain forests of Southern Ecuador

FEDDES REPERTORIUM, Issue 3-4 2004
(corresp. author) C. Ohl Dr.
The regeneration of the vegetation of natural landslides was studied at Estación Científica San Francisco (ECSF) in a tropical mountain forest area of Southern Ecuador, north of Podocarpus National Park. The study focused on the process of regeneration on natural landslides and the vegetation change along an altitudinal gradient using space-for-time substitution. The most important plant families present on the landslides during the first stages of succession are Gleicheniaceae (Pteridophyta), Melastomataceae, Ericaceae and Orchidaceae. Species of the genus Sticherus (Gleicheniaceae) are dominant, and species composition varies with altitude and soil conditions. Colonisation of landslides is not homogeneous. Zones with bare ground, sparsely vegetated patches and densely covered areas may be present within the same slide. This small scale spatial heterogeneity is often created by local ongoing sliding processes and different distances towards undisturbed areas. Therefore, the duration of the successional process is highly variable. The initial stage of the succession is a community of non vascular plants interspersed with scattered individuals of vascular plants. By means of runner-shoots they form vegetation patches which start growing into each other. The second stage is dominated by Gleicheniaceae (species composition varying in altitude and soil chemistry). In the third stage, bushes and trees colonise, sheltered by the ferns, and a secondary forest develops with pioneer species that are not found in the primary forest vegetation. The common phenomenon of the natural landslides leads to an increase in structural and species diversity on a regional scale. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) Rekolonisation auf natürlichen Hangrutschungen in tropischen Bergwäldern Südecuadors Im tropischen Bergwald Südecuadors (nördlich des Podocarpus Nationalparks im Gebiet der Estación Científica San Francisco, ECSF) wurden Artenzusammensetzung und Rekolonisationsprozesse früher Sukzessionsstadien entlang eines Höhengradienten auf natürlichen Hangrutschungen untersucht. Besonders Gleicheniaceae, Melastomataceae, Ericaceae und Orchidaceae sind von Bedeutung. Arten der Gattung Sticherus (Gleicheniaceae) sind sehr zahlreich vertreten. Die Artenzusammensetzung wechselt entlang des Höhengradienten und in Abhängigkeit von den Bodenbedingungen. Die mosaikartige Verteilung der Vegetation auf den Rutschungen (gänzlich unbedeckte bis stark überwucherte Zonen) ist auf häufige lokale Nachrutschungen sowie auf unterschiedliche Geschwindigkeiten der Wiederbesiedlung entsprechend der Distanz zu ungestörter Vegetation zurückzuführen. Die Dauer der Sukzession ist daher sehr variabel. Das Initialstadium wird von Moosen und Flechten gebildet. Im weiteren Verlauf führt die überwiegend vegetative Ausbreitung einzelner Gefäßpflanzen zum zweiten Sukzessionsstadium. Dieses ist durch die Dominanz von Gleicheniaceae gekennzeichnet, während im dritten Stadium im Schutze der Farne erste Büsche und Bäume heranwachsen und den Pionierwald bilden. Da diese Arten nicht im Primärwald vertreten sind, kommt es regional zu einer beträchtlichen Erhöhung der Artenzahl und der strukturellen Diversität. [source]


,15N of zooplankton species in subarctic lakes in northern Sweden: effects of diet and trophic fractionation

FRESHWATER BIOLOGY, Issue 5 2004
J. Karlsson
Summary 1. To assess the use of stable nitrogen isotopes (,15N) for reconstructing trophic relationships in planktonic food webs, crustacean zooplankton species and pelagic dissolved and particulate matter were analysed in 14 subarctic lakes in northern Sweden. The lakes are situated along an altitudinal gradient and show a substantial variation in nutrient content and energy mobilization by bacterioplankton and phytoplankton. 2. The ,15N of dissolved and particulate matter was comparatively low, suggesting efficient N recycling and low losses of depleted N from the pelagic zone of these unproductive lakes. 3. Copepods had a systematically higher ,15N than cladocerans, with an average difference of 3.1,4.9, within lakes, implying different trophic positions of the two groups. Comparisons of nitrogen pools and energy fluxes suggest that the low cladoceran ,15N was a result of feeding on bacteria. 4. The difference in ,15N between copepods and cladocerans declined with decreasing bacterioplankton production among lakes, due either to increasing trophic isotope fractionation or decreasing relative importance of bacteria in the diet of cladocerans. [source]


The Temperature Response in the Ring Widths of Phyllocladus Aspleniifolius (Celery,top Pine) Along an Altitudinal Gradient in the Warra LTER Area, Tasmania

GEOGRAPHICAL RESEARCH, Issue 3 2002
K.J. Allen
The temperature response of four Phyllocladus aspleniifolius (Celery,top Pine) sites along an altitudinal gradient within a cool temperate broad leaf forest environment in the southwest of Tasmania, Australia was examined. Although strong evidence of a systematically changing response with elevation could not be found, there was evidence that minimum temperature in particular may be important in determining the altitudinal extent of the species. Climatic responses of the Warra LTER (Long Term Ecological Research) area sites were representative of other known sites in southwestern Tasmania. A link between event years in P. aspleniifolius and warm/dry conditions indicates that these event years may provide a guide to the historical frequency of fire weather in Tasmania's southwest. [source]


The influence of large-scale atmospheric circulation on the surface energy balance of the King George Island ice cap

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 1 2001
Matthias Braun
Abstract During the austral summer 1997,1998 three automatic weather stations were operated at different altitudes on the sub-Antarctic ice cap of King George Island (South Shetland Islands). Snowmelt was derived from energy balance computations. Turbulent heat fluxes were calculated from meteorological measurements using the bulk aerodynamic approach, with net radiation being measured directly. Modelled ablation rates were compared with readings at ablation stakes and continuously measured snow height at a reference site. Snow depletion and daily snowmelt cycles could be well reproduced by the model. Generally, radiation balance provided the major energy input for snowmelt at all altitudes, whereas sensible heat flux was a second heat source only in lower elevations. The average latent heat flux was negligible over the entire measuring period. A strong altitudinal gradient of available energy for snowmelt was observed. Sensible heat flux as well as latent heat flux decreased with altitude. The measurements showed a strong dependence of surface energy fluxes and ablation rates on large-scale atmospheric conditions. Synoptic weather situations were analysed based on AVH RR infrared quicklook composite images and surface pressure charts. Maximum melt rates of up to 20 mm per day were recorded during a northwesterly advection event with meridional air mass transport. During this northwesterly advection, the contribution of turbulent heat fluxes to the energy available for snowmelt exceeded that of the radiation balance. For easterly and southerly flows, continentally toned, cold dry air masses dominated surface energy balance terms and did not significantly contribute to ablation. The link between synoptic situations and ablation is especially valuable, as observed climatic changes along the Antarctic Peninsula are attributed to changes in the atmospheric circulation. Therefore, the combination of energy balance calculations and the analysis of synoptic-scale weather patterns could improve the prediction of ablation rates for climate change scenarios. Copyright © 2001 Royal Meteorological Society [source]


Acacia species turnover in space and time in an African savanna

JOURNAL OF BIOGEOGRAPHY, Issue 1 2001
William J. Bond
Aim Patterns of species turnover along environmental gradients are better studied than their causes. Competitive interactions, or physiological tolerance are most often cited as determinants of turnover. Here we investigate differential tree species response to disturbance by fire and mammal browsing as causes of changing dominance of species within and among sites along an altitudinal gradient. Methods We documented the distribution of two Acacia species using maps and sample transects. We explored possible causes of species turnover by studying differences between the species in tolerance to grass competition using pot experiments, to browsers by observing patterns of shoot damage, and to fire by comparing the size structure of populations burnt at different frequencies and intensities. Results Acacia karroo woodlands were rare and occur at higher elevations than the much more common A. nilotica woodlands. Woodland composition seems set to change in future since the pattern of dominance was reversed in juvenile stages. A. karroo juveniles were very widespread and far more abundant than A. nilotica juveniles. A. karroo juveniles were most abundant in tall fire-prone grasslands and were rare on grazing lawns whereas A. nilotica showed the reverse pattern. In the pot experiments, growth of both species was suppressed by grasses but there were no significant differences in response between the two species. Juveniles of A. karroo were more heavily browsed than those of A. nilotica. However juveniles of A. nilotica were less tolerant of frequent intense burns than juvenile A. karroo. Main conclusions Disturbance gradients, from high fire frequency and low herbivore density at high altitudes, to lower fire frequency and higher herbivore density at low altitudes, are responsible for the shift in community structure along the spatial gradient. Differential responses to browsing and fire may also explain temporal turnover from A. nilotica in the past to A. karroo in the present. Changes in the area burnt annually, and in faunal composition, suggest a landscape-scale shift from grazing-dominated short-grass landscapes in the 1960s, favouring A. nilotica, to fire-dominated tall grasslands in the 1990s favouring A. karroo. We suggest that species turnover due to differential responses along disturbance gradients may be much more widespread than the current paucity of studies suggests. [source]


Plant community distribution and variation along the Awash river corridor in the main Ethiopian rift

AFRICAN JOURNAL OF ECOLOGY, Issue 1 2010
Mitiku Tikssa
Abstract The vegetation along the Awash River (1200-km long) in the main Ethiopian Rift, and its relationship with environmental factors was studied. Seven plant communities were described from the study area: (1) Acacia nilotica subsp. leiocarpa. , Carissa edulis type; (2) Acacia robusta subsp. usambarensis , Acokanthera schimperi type; (3) Celtis africana , Mimusops laurifolia type; (4) Acacia senegal , Acacia mellifera , Dobera glabra type; (5) Acacia nilotica subsp. indica , Ficus capreaefolia type; (6) Lannea schimperi,Glycine wightii type; and (7) Tamarix nilotica , Acacia hocki community type. It has been shown that the plant communities along the river follow an altitudinal gradient. The vegetation of the Awash River is mainly the result of the interactions between edaphic factors, the hydrology, altitude, slope and climate. Résumé Nous avons étudié la végétation qui pousse le long de la rivière Awash (1 200 km de long), dans le principal Rift éthiopien, et sa relation avec certains facteurs environnementaux. Nous avons décrit sept communautés végétales de l'aire étudiée : le type de communautéAcacia nilotica subsp. leiocarpa , Carissa edulis; 2) le type Acacia robusta subsp. usambarensis , Acokanthera schimperi; 3) le type Celtis africana , Mimusops laurifolia; 4) le type Acacia senegal , Acacia mellifera , Dobera glabra; 5) le type Acacia nilotica subsp. indica , Ficus capreaefolia; 6) le type Lannea schimperi,Glycine wightii; et 7) le type Tamarix nilotica , Acacia hocki. On a pu montrer que les communautés de plantes du long de la rivière suivent un gradient altitudinal. La végétation de l'Awash résulte principalement d'interactions entre des facteurs édaphiques tels que l'hydrologie, l'altitude, l'importance de la pente et le climat. [source]


An explicit test for the contribution of environmental maternal effects to rapid clinal differentiation in an invasive plant

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 5 2009
A. MONTY
Abstract Population differentiation of alien invasive plants within their non-native range has received increasingly more attention. Common gardens are typically used to assess the levels of genotypic differentiation among populations. However, in such experiments, environmental maternal effects can influence phenotypic variation among individuals if seed sources are collected from field populations under variable environmental regimes. In the present study, we investigated the causes of an altitudinal cline in an invasive plant. Seeds were collected from Senecio inaequidens (Asteraceae) populations along an altitudinal gradient in southern France. In addition, seeds from the same populations were generated by intra-population crossings in a climatic chamber. The two seed lots were grown in a common garden in Central Belgium to identify any evidence of environmentally induced maternal effects and/or an altitudinal cline in a suite of life-history traits. Results failed to detect any environmental maternal effects. However, an altitudinal cline in plant height and above-ground biomass was found to be independent of the maternal environment. [source]


Altitudinal variation in behavioural thermoregulation: local adaptation vs. plasticity in California grasshoppers

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 4 2005
J. SAMIETZ
Abstract We investigated the adaptive significance of behavioural thermoregulation in univoltine populations of the grasshopper Melanoplus sanguinipes along an altitudinal gradient in California using laboratory tests of animals raised under different temperatures. Trials consisted of continuous body temperature measurements with semi-implanted microprobes in a test arena, and observation and simultaneous recording of behavioural responses. These responses included mobility, basking and orientation of the body axes (aspect angle) towards a radiation source. Mobility and basking are determined by the altitudinal origin of the parental generation and not by the temperature treatments. With increasing altitude, individuals tend increasingly to raise body temperatures via mobility and increased basking. In contrast, body orientation towards the radiation source is influenced by the temperature treatments but not by the altitude of origin. Individuals experiencing higher temperatures during rearing show a lower tendency to lateral flanking. We conclude that body orientation responses are not adapted locally. In contrast other components of the behavioural syndrome that increase body temperature, such as mobility and basking, are adaptive in response to local selection pressure. The thermoregulatory syndrome of these grasshoppers is an important contribution to life-history adaptations that appropriately match season lengths. [source]


Plant species and growth form richness along altitudinal gradients in the southwest Ethiopian highlands

JOURNAL OF VEGETATION SCIENCE, Issue 4 2010
Wana Desalegn
Abstract Questions: Do growth forms and vascular plant richness follow similar patterns along an altitudinal gradient? What are the driving mechanisms that structure richness patterns at the landscape scale? Location: Southwest Ethiopian highlands. Methods: Floristic and environmental data were collected from 74 plots, each covering 400 m2. The plots were distributed along altitudinal gradients. Boosted regression trees were used to derive the patterns of richness distribution along altitudinal gradients. Results: Total vascular plant richness did not show any strong response to altitude. Contrasting patterns of richness were observed for several growth forms. Woody, graminoid and climber species richness showed a unimodal structure. However, each of these morphological groups had a peak of richness at different altitudes: graminoid species attained maximum importance at a lower elevations, followed by climbers and finally woody species at higher elevations. Fern species richness increased monotonically towards higher altitudes, but herbaceous richness had a dented structure at mid-altitudes. Soil sand fraction, silt, slope and organic matter were found to contribute a considerable amount of the predicted variance of richness for total vascular plants and growth forms. Main Conclusions: Hump-shaped species richness patterns were observed for several growth forms. A mid-altitudinal richness peak was the result of a combination of climate-related water,energy dynamics, species,area relationships and local environmental factors, which have direct effects on plant physiological performance. However, altitude represents the composite gradient of several environmental variables that were interrelated. Thus, considering multiple gradients would provide a better picture of richness and the potential mechanisms responsible for the distribution of biodiversity in high-mountain regions of the tropics. [source]


Predictors of plant phenology in a diverse high-latitude alpine landscape: growth forms and topography

JOURNAL OF VEGETATION SCIENCE, Issue 5 2009
Marianne Iversen
Abstract Question: Different plant growth forms may have distinctly different functioning in ecosystems. Association of phenological patterns with growth form will therefore help elucidate the role of phenology in an ecosystem. We ask whether growth forms of common vascular plants differ in terms of vegetative and flowering phenology, and if such phenological differences are consistent across environmental gradients caused by landscape-scale topography. Location: A high-latitude alpine landscape in Finnmark County, Norway (70°N). Methods: We assessed vegetative and flowering phenology repeatedly in five growth forms represented by 11 common vascular plant species across an altitudinal gradient and among differing slope aspects. Results: Species phenology clustered well according to growth form, and growth form strongly explained variation in both flowering and vegetative phenology. Altitude and aspect were poor predictors of phenological variation. Vegetative phenology of the growth forms, ranked from slowest to fastest, was in the order evergreen shrubs [source]


Spatial structure along an altitudinal gradient in the Italian central Alps suggests competition and facilitation among coniferous species

JOURNAL OF VEGETATION SCIENCE, Issue 3 2008
Emanuele Lingua
Abstract Questions: What is the structure of the anthropogenic upper forest-grassland ecotone and are there differences in the spatial relationships between the tree species involved? Location: Valfurva Valley, Italian central Alps. Methods: We conducted a spatial distribution and structure analysis in three 1-ha permanent plots along an altitudinal gradient, from the treeline to the sub-alpine forest. We reconstructed the age structure from cores from each individual with diameter > 4 cm at 50 cm height. Results: All tree species and age classes examined had a clumped structure. The cluster tendency was more evident at the treeline where the environmental conditions are more severe. In the sub-alpine forest there was a repulsion between Pinus cembra and Pinus mugo but at the treeline P. cembra was frequently found downslope from P. mugo. Conclusions: Although human influence has been the main driving force in shaping the present forest structure, in the last few decades natural dynamics have become the predominant force acting on forest structure and processes, showing a higher magnitude as altitude increases. Our results emphasize the existence of facilitating and interfering mechanisms between different species. P. cembra seems to be favoured compared to the other tree species. [source]


Seed bank dynamics in tall-tussock grasslands along an altitudinal gradient

JOURNAL OF VEGETATION SCIENCE, Issue 2 2003
Guillermo Funes
Zuloaga et al. (1994); Zuloaga & Morrone (1996, 1999) Abstract. We studied the germinable soil seed bank of tall-tussock grasslands along an altitudinal gradient in the mountains of central Argentina. We selected 10 sampling plots at three altitudinal levels (1200 m, 1600 m and 2200 m). We assessed the composition of the established vegetation and took ten compound soil samples (0 - 5 cm depth) at each plot in autumn and spring. The soil samples were sieved, chilled, and incubated in a glasshouse to assess the composition of the seed bank. The similarity between the composition of the seed bank flora and that of the established vegetation was low throughout the gradient. Most species did not change their seed bank strategy along the gradient. Seed bank richness and density increased with altitude. Most species had a persistent seed bank at all altitudinal levels, and the proportion of such species increased with altitude. These results suggest that a cold climate directly and/or indirectly favours the formation of seed banks and seed persistence in the soil. [source]


Variations in body melanization impact desiccation resistance in Drosophila immigrans from Western Himalayas

JOURNAL OF ZOOLOGY, Issue 2 2008
R. Parkash
Abstract Ectothermic species face problems of water balance under colder and drier climatic conditions in montane localities. We investigated five ecophysiological traits (body melanization, desiccation resistance, rate of water loss or gain and body size) in eight populations of Drosophila immigrans from an altitudinal gradient (600,2226 m) in the Western Himalayas. The traits showed bell-shaped variability patterns characteristic of quantitative traits. For body melanization, we observed high heritability (0.65) on the basis of parent,offspring regression. A comparison of highland versus foothill populations showed significant divergence for all the traits except body size. Darker flies from the highlands exhibited higher desiccation resistance but reduced rate of water loss or gain as compared with lighter flies from the foothills, which showed lower desiccation resistance and higher rates of water loss as well as gain. Lack of differences in the amount of epicuticular lipids cannot account for differential reduction in cuticular water loss in altitudinal populations. However, within- as well as between-population differences in body melanization can account for changes in desiccation resistance and reduction in cuticular water loss. Analyses of highland versus lowland populations as well as in assorted darker and lighter flies from a highland population have shown differences in haemolymph and dehydration tolerance. For the mechanistic basis of desiccation resistance, our results on wild populations of Drosophila immigrans are not in agreement with those reported for laboratory-selected desiccation-resistant strains in Drosophila melanogaster. Thus, ecophysiological mechanisms could be different under laboratory versus field selection. [source]


Morphological plasticity of Parrotia persica leaves in eastern Hyrcanian forests (Iran) is related to altitude

NORDIC JOURNAL OF BOTANY, Issue 3 2010
Hamed Yosefzadeh
Variation in leaf characters of Parrotia persica in relation to their position in the canopy along an altitudinal gradient were studied. Genetic and phenotypic characters make P. persica one of the most noteworthy plants in the five floristic regions of Iran. It is an endemic species of the Hyrcanian forests, and occurs naturally from sea level to over 900 m a.s.l. on the north side of the Mountain Ranges of Alborz, northern Iran. There was a significant effect of altitude only on few leaf features [width of lamina, base angle (internal angle of lamina), number of pair vein (number of principal veins of lamina) of leaf, top and end of leaf figure]. Among different geographical sides of the crown, there was no significant difference in the plasticity of leaf features, but leaf figure (both top of leaf figure and end of leaf figure) showed the lowest plasticity among the different leaf characters. Of all characters measured, the lowest plasticity among the three populations was found for base angle and number of vein pairs. A PCA analysis showed that leaf petiole and maximum width of lamina in 0.9 of its length, together with leaf figure and width of lamina, accounted for the greatest variation in difference of populations. [source]


Reproduction of an early-flowering Mediterranean mountain narrow endemic (Armeria caespitosa) in a contracting mountain island

PLANT BIOLOGY, Issue 4 2009
R. García-Camacho
Abstract Reproduction at population lower edges is important for plant species persistence, especially in populations on contracting high-mountain islands. In this context, the ability of plants to reproduce in different microhabitats seems to be important to guarantee seed production in stressful environments, such as Mediterranean high mountains. We hypothesised that the warmer and drier conditions at the lower edge would be deleterious for the reproduction of Armeria caespitosa, an early-flowering plant. In addition, reproductive plasticity along this mountain gradient may also be microhabitat-dependent. We studied factors affecting the reproductive success of A. caespitosa, an endemic of the Spanish Sistema Central. We considered a complex set of predictors, including phenology, plant size and environmental factors at different scales using generalised estimating equations and generalised linear models. Microhabitat, together with the position in the altitudinal gradient and inter-annual variability affected the reproduction of A. caespitosa. In addition, individuals with longer flowering periods (duration of flowering) had significantly lower fruit set and a higher number of unviable seeds; delayed flowering peaks favoured the production of both viable and unviable fruits. Microhabitat variability over an altitudinal range is relevant for the reproduction of A. caespitosa, and is more important at the lower edge of the altitudinal range, where the species faces the most adverse conditions. In addition, the ability to reproduce in different microhabitats might increase the chances of the species to cope with environmental uncertainties under on-going climate warming. Finally, reproduction of this early-flowering plant is constrained by summer drought, which might shape its reproductive phenology. [source]


Geographic altitude, surnames, and height variation of Jujuy (Argentina) conscripts

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 2 2009
Ignacio F. Bejarano
Abstract The height records of 48,589 conscripts born in Jujuy between 1870 and 1960 were examined in order to study the variation in adult male height (AMH) in terms of geographical altitude and surnames. Data were clustered by origin of surnames (divided into native and foreign names), decades, and according to the four Jujenean geographical regions distributed along an altitudinal gradient (Puna, Quebrada, Valle, and Ramal). The variation of surnames, geographical altitude, and time on human height were examined by analysis of variance. Regardless of the drafting year, individuals in the four regions bearing foreign surnames proved significantly taller (P < 0.001) than those who had a native surname. Average height, regardless of ethnic group, presented a reverse relationship to geographical altitude. A higher AMH was found in individuals bearing foreign surnames in Jujuy and lower ones in the population located in the highlands and bearing native surnames. Interregional and intergroup AMH variations would be affected by the complex interaction between geographical altitude and factors associated to it and by the ethnic characteristics of these population as well. Am J Phys Anthropol 2009. © 2008 Wiley-Liss, Inc. [source]


Floristic diversity in fragmented Afromontane rainforests: Altitudinal variation and conservation importance

APPLIED VEGETATION SCIENCE, Issue 3 2010
Christine B. Schmitt
Abstract Question: How does the floristic diversity of Afromontane rainforests change along an altitudinal gradient? What are the implications for conservation planning in these strongly fragmented forest areas that form part of the Eastern Afromontane Biodiversity Hotspot? Location: Bonga, southwestern Ethiopia. Methods: Based on evidence from other montane forests, we hypothesized that altitude has an effect on the floristic diversity of Afromontane rainforests in southwestern Ethiopia. To test this hypothesis, detailed vegetation surveys were carried out in 62 study plots located in four relatively undisturbed forest fragments situated at altitudes between 1600 m and 2300 m. Floristic diversity was evaluated using a combination of multivariate statistical analyses and diversity indices. Results: Ordination and indicator species analyses showed gradual variations in floristic diversity along the altitudinal gradient with a pronounced shift in species composition at ca. 1830 m. Upper montane forest (>1830 m) is characterized by high fern diversity and indicator species that are Afromontane endemics. Lower montane forest (<1830 m) exhibits a greater diversity of tree species and a higher abundance of the flagship species Coffea arabica. Conclusions: Our results provide crucial ecological background information concerning the montane rainforests of Ethiopia, which have been poorly studied until now. We conclude that both forest types identified during this study need to be considered for conservation because of their particular species compositions. Owing to the high degree of forest fragmentation, conservation concepts should consider a multi-site approach with at least two protected areas at different altitudinal levels. [source]


Morphological variation and floral abnormalities in a trigger plant across a narrow altitudinal gradient

AUSTRAL ECOLOGY, Issue 7 2009
ARY A. HOFFMANN
Abstract Local adaptation in alpine plants has been demonstrated across wide altitudinal gradients, but has rarely been examined across the alpine-to-montane transition that often encompasses only a few hundred metres. Here we characterize morphological variation in leaf and floral characteristics of the trigger plant Stylidium armeria along a narrow altitudinal gradient in the Bogong High Plains in Victoria. Across this gradient, which encompasses the high-elevation limit of this species, linear changes were found for floral scape height, leaf length and flower number. All these traits decreased with increasing altitude, whereas the frequency of abnormal flowers increased. When plants were grown in a common garden environment, an altitudinal pattern for flower abnormalities was no longer detected. However, altitudinal patterns for leaf length and scape height were maintained, albeit weaker than in the field. This indicates heritable variation for these morphological traits; the altitudinal patterns are likely to reflect the effects of selection by environmental factors that vary with altitude. Selection pressures remain to be identified but have generated both cogradient and countergradient patterns of variation. [source]


The species delimitation problem applied to the Agabus bipustulatus complex (Coleoptera, Dytiscidae) in north Scandinavia

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2001
MARCUS K. DROTZ
Agabus bipustulatus (Linnaeus) is one of the most common aquatic beetles in Europe. Two species have been traditionally recognized within the Palaearctic Agabus bipustulatus complex (Coleoptera, Dytiscidae) in Scandinavia: a lowland form A. bipustulatus and a high-altitude form A. solieri Aube. The specific status of solieri has been debated for more than a century but no quantitative investigation has been made to evaluate the status of this taxon. In this study we show that there is no clear-cut delimitation between the two forms, either morphological or genetic, across an altitudinal gradient in north Scandinavia. Morphological differences between 22 populations were analysed separately for each sex with both thin-plate splines relative warp analysis and ,classical-length' morphometries. Genetic variation at five polymorphic enzyme loci was analysed among seven populations. The morphological studies showed gradual variation correlated with altitude, in particular in the character that is traditionally used to separate solieri and bipustulatus, and in both the beetles' morphometric size and the lateral width of the metasternal plate, which is connected to flight capacity. The genetic study indicates that the a-Gpdh enzyme locus, which is involved in the transfer of energy to the flight muscles, is evidently subject to directional selection. Only minor population differences were observed without this system. Subdivision was found in some populations and was probably caused by migration from outside or within the local population. The overall conclusion is that there is no clear-cut species delimitation between A. bipustulatus and A. solieri in north Scandinavia. This indicates that A. solieri is a cold-adapted altitudinal form of the variable A. bipustulatus; additional support for this is the finding of solieri,look alikes' in cold springs in areas normally inhabited by bipustulatus. [source]


Why do mountains support so many species of birds?

ECOGRAPHY, Issue 3 2008
Adriana Ruggiero
Although topographic complexity is often associated with high bird diversity at broad geographic scales, little is known about the relative contributions of geomorphologic heterogeneity and altitudinal climatic gradients found in mountains. We analysed the birds in the western mountains of the New World to examine the two-fold effect of topography on species richness patterns, using two grains at the intercontinental extent and within temperate and tropical latitudes. Birds were also classified as montane or lowland, based on their overall distributions in the hemisphere. We estimated range in temperature within each cell and the standard deviation in elevation (topographic roughness) based on all pixels within each cell. We used path analysis to test for the independent effects of topographic roughness and temperature range on species richness while controlling for the collinearity between topographic variables. At the intercontinental extent, actual evapotranspiration (AET) was the primary driver of species richness patterns of all species taken together and of lowland species considered separately. In contrast, within-cell temperature gradients strongly influenced the richness of montane species. Regional partitioning of the data also suggested that range in temperature either by itself or acting in combination with AET had the strongest "effect" on montane bird species richness everywhere. Topographic roughness had weaker "effects" on richness variation throughout, although its positive relationship with richness increased slightly in the tropics. We conclude that bird diversity gradients in mountains primarily reflect local climatic gradients. Widespread (lowland) species and narrow-ranged (montane) species respond similarly to changes in the environment, differing only in that the richness of lowland species correlates better with broad-scale climatic effects (AET), whereas mesoscale climatic variation accounts for richness patterns of montane species. Thus, latitudinal and altitudinal gradients in species richness can be explained through similar climatic-based processes, as has long been argued. [source]


The role of spatial scale and the perception of large-scale species-richness patterns

ECOLOGY LETTERS, Issue 2 2005
Carsten Rahbek
Abstract Despite two centuries of exploration, our understanding of factors determining the distribution of life on Earth is in many ways still in its infancy. Much of the disagreement about governing processes of variation in species richness may be the result of differences in our perception of species-richness patterns. Until recently, most studies of large-scale species-richness patterns assumed implicitly that patterns and mechanisms were scale invariant. Illustrated with examples and a quantitative analysis of published data on altitudinal gradients of species richness (n = 204), this review discusses how scale effects (extent and grain size) can influence our perception of patterns and processes. For example, a hump-shaped altitudinal species-richness pattern is the most typical (c. 50%), with a monotonic decreasing pattern (c. 25%) also frequently reported, but the relative distribution of patterns changes readily with spatial grain and extent. If we are to attribute relative impact to various factors influencing species richness and distribution and to decide at which point along a spatial and temporal continuum they act, we should not ask only how results vary as a function of scale but also search for consistent patterns in these scale effects. The review concludes with suggestions of potential routes for future analytical exploration of species-richness patterns. [source]


Temporal coherence of two alpine lake basins of the Colorado Front Range, U.S.A.

FRESHWATER BIOLOGY, Issue 3 2000
J. I. L. L. S. Baron
1. Knowledge of synchrony in trends is important to determining regional responses of lakes to disturbances such as atmospheric deposition and climate change. We explored the temporal coherence of physical and chemical characteristics of two series of mostly alpine lakes in nearby basins of the Colorado Rocky Mountains. Using year-to-year variation over a 10-year period, we asked whether lakes more similar in exposure to the atmosphere be-haved more similarly than those with greater influence of catchment or in-lake processes. 2. The Green Lakes Valley and Loch Vale Watershed are steeply incised basins with strong altitudinal gradients. There are glaciers at the heads of each catchment. The eight lakes studied are small, shallow and typically ice-covered for more than half the year. Snowmelt is the dominant hydrological event each year, flushing about 70% of the annual discharge from each lake between April and mid-July. The lakes do not thermally stratify during the period of open water. Data from these lakes included surface water temper-ature, sulphate, nitrate, calcium, silica, bicarbonate alkalinity and conductivity. 3. Coherence was estimated by Pearson's correlation coefficient between lake pairs for each of the different variables. Despite close geographical proximity, there was not a strong direct signal from climatic or atmospheric conditions across all lakes in the study. Individual lake characteristics overwhelmed regional responses. Temporal coherence was higher for lakes within each basin than between basins and was highest for nearest neighbours. 4. Among the Green Lakes, conductivity, alkalinity and temperature were temporally coherent, suggesting that these lakes were sensitive to climate fluctuations. Water tem-perature is indicative of air temperature, and conductivity and alkalinity concentrations are indicative of dilution from the amount of precipitation flushed through by snowmelt. 5. In Loch Vale, calcium, conductivity, nitrate, sulphate and alkalinity were temporally coherent, while silica and temperature were not. This suggests that external influences are attenuated by internal catchment and lake processes in Loch Vale lakes. Calcium and sulphate are primarily weathering products, but sulphate derives both from deposition and from mineral weathering. Different proportions of snowmelt versus groundwater in different years could influence summer lake concentrations. Nitrate is elevated in lake waters from atmospheric deposition, but the internal dynamics of nitrate and silica may be controlled by lake food webs. Temperature is attenuated by inconsistently different climates across altitude and glacial meltwaters. 6. It appears that, while the lakes in the two basins are topographically close, geologically and morphologically similar, and often connected by streams, only some attributes are temporally coherent. Catchment and in-lake processes influenced temporal patterns, especially for temperature, alkalinity and silica. Montane lakes with high altitudinal gradients may be particularly prone to local controls compared to systems where coherence is more obvious. [source]


Global patterns of genetic variation in plant species along vertical and horizontal gradients on mountains

GLOBAL ECOLOGY, Issue 2 2008
Takafumi Ohsawa
ABSTRACT Aim To understand global patterns of genetic variation in plant species on mountains and to consider the significance of mountains for the genetic structure and evolution of plant species. Location Global. Methods We review published studies. Results Genetic diversity within populations can vary along altitudinal gradients in one of four patterns. Eleven of 42 cited studies (26% of the total) found that populations at intermediate altitudes have greater diversity than populations at lower and higher altitudes. This is because the geographically central populations are under optimal environmental conditions, whereas the peripheral populations are in suboptimal situations. The second pattern, indicating that higher populations have less diversity than lower populations, was found in eight studies (19%). The third pattern, indicating that lower populations have lower diversity than higher populations, was found in 10 studies (24%). In 12 studies (29%), the intrapopulation genetic variation was found to be unaffected by altitude. Evidence of altitudinal differentiation was found in more than half of these studies, based on measurements of a range of variables including genome size, number of chromosomes or a range of loci using molecular markers. Furthermore, great variation has been found in phenotypes among populations at different altitudes in situ and in common garden experiments, even in cases where there was no associated variation in molecular composition. Mountains can be genetic barriers for species that are distributed at low elevations, but they can also provide pathways for species that occupy high-elevation habitats. [Correction added after publication 9 October 2007: ,less diversity' changed to ,greater diversity' in the second sentence of the Results section of the Abstract] Main conclusions Genetic diversity within populations can vary along altitudinal gradients as a result of several factors. The results highlight the importance of phenotypic examinations in detecting altitudinal differences. The influence of mountain ridges on genetic differentiation varies depending, inter alia, on the elevation at which the species occurs. Based on these findings, zoning by altitudes or ridges would be helpful for the conservation of tree populations with the onset of global warming. [source]


Plant species and growth form richness along altitudinal gradients in the southwest Ethiopian highlands

JOURNAL OF VEGETATION SCIENCE, Issue 4 2010
Wana Desalegn
Abstract Questions: Do growth forms and vascular plant richness follow similar patterns along an altitudinal gradient? What are the driving mechanisms that structure richness patterns at the landscape scale? Location: Southwest Ethiopian highlands. Methods: Floristic and environmental data were collected from 74 plots, each covering 400 m2. The plots were distributed along altitudinal gradients. Boosted regression trees were used to derive the patterns of richness distribution along altitudinal gradients. Results: Total vascular plant richness did not show any strong response to altitude. Contrasting patterns of richness were observed for several growth forms. Woody, graminoid and climber species richness showed a unimodal structure. However, each of these morphological groups had a peak of richness at different altitudes: graminoid species attained maximum importance at a lower elevations, followed by climbers and finally woody species at higher elevations. Fern species richness increased monotonically towards higher altitudes, but herbaceous richness had a dented structure at mid-altitudes. Soil sand fraction, silt, slope and organic matter were found to contribute a considerable amount of the predicted variance of richness for total vascular plants and growth forms. Main Conclusions: Hump-shaped species richness patterns were observed for several growth forms. A mid-altitudinal richness peak was the result of a combination of climate-related water,energy dynamics, species,area relationships and local environmental factors, which have direct effects on plant physiological performance. However, altitude represents the composite gradient of several environmental variables that were interrelated. Thus, considering multiple gradients would provide a better picture of richness and the potential mechanisms responsible for the distribution of biodiversity in high-mountain regions of the tropics. [source]


Species interaction and response to wind speed alter the impact of projected temperature change in a montane ecosystem

JOURNAL OF VEGETATION SCIENCE, Issue 4 2010
Dafydd Crabtree
Abstract Question: How does an improved understanding of species interactions, combined with an additional ecological variable (wind speed), alter the projected vegetation response to variation in altitudinal temperature? Location: Cairngorm Mountains, Scotland. Methods: Montane heathland vegetation was sampled from 144 plots (432 quadrats) comprising eight altitudinal transects. Ordination by partial DCA and path analysis was used to confirm: (1) the effect of wind speed and altitude (, temperature) on vegetation structure, i.e. canopy height and cover of bare ground, and (2) the control of arctic/alpine macrolichen occurrence by vegetation structure. Nested regression analysis was used to project the response of vegetation structure and lichen occurrence to temperature change scenarios with and without a step-wise change in future wind speed. Results: Warming trends shifted vegetation zones upwards, with a subsequent loss of suitable habitat for arctic/alpine lichens. However, incorporating wind speed as an additional explanatory variable had an important modifying effect on the vegetation response to temperature: decreasing wind speed exaggerates the effects of increased temperature and vice versa. Our models suggest that for the wind-driven heath examined, a 20% increase in mean wind speed may negate the effect of increased temperature on vegetation structure, resulting in no net change in lichen occurrence. Conclusions: We caution that an improved understanding of species interactions in vegetation response models may force the consideration of locally variable environmental parameters (e.g. wind speed), bringing into question the predicted vegetation response based on standard projections of temperature change along altitudinal gradients. [source]


Activity following arousal in winter in North American vespertilionid bats

MAMMAL REVIEW, Issue 4 2006
JUSTIN G. BOYLES
ABSTRACT 1Many bat species hibernate to conserve energy during winter and like all hibernators they commonly arouse. During these arousals, some bats may undertake activities away from the hibernation site. Systematic ecological studies of the frequency and purpose of winter activity in temperate zone bats of North America are rare and much of the literature involves observations of single individuals or unmarked populations. 2We review the available literature on winter activity among North American vespertilionid bats to highlight the paucity of data on this subject and to stimulate future research. Due to the lack of repeated, systematic studies on most North American species, the conclusions drawn are general or pertain only to parts of the geographical range of any species. 3We suggest that winter activity is ubiquitous among temperate zone bats, but the degree and purpose of activity varies greatly between and within species. In general, cave-dwelling bats tend to be relatively inactive compared with tree and foliage roosting bats during winter. 4Cave-dwelling and tree cavity-dwelling species do not appear to feed, but they do drink and occasionally copulate during the hibernation period. Species that hibernate in foliage or leaf litter are the most active species during winter and may feed and drink throughout winter, although they probably do not copulate because of their solitary nature. 5We encourage researchers to conduct studies on all aspects of winter activity for North American vespertilionids across wide latitudinal and altitudinal gradients. We suggest studies in the near future be focused on estimating the energetic costs and benefits of winter activity through determination of the frequency and intensity of winter feeding activity and more thorough examinations of movements within and among caves. Studies on common, wide-ranging species have the potential to illuminate large-scale patterns and differences and should be favoured over studies on rarer species. [source]


Morphological variation and floral abnormalities in a trigger plant across a narrow altitudinal gradient

AUSTRAL ECOLOGY, Issue 7 2009
ARY A. HOFFMANN
Abstract Local adaptation in alpine plants has been demonstrated across wide altitudinal gradients, but has rarely been examined across the alpine-to-montane transition that often encompasses only a few hundred metres. Here we characterize morphological variation in leaf and floral characteristics of the trigger plant Stylidium armeria along a narrow altitudinal gradient in the Bogong High Plains in Victoria. Across this gradient, which encompasses the high-elevation limit of this species, linear changes were found for floral scape height, leaf length and flower number. All these traits decreased with increasing altitude, whereas the frequency of abnormal flowers increased. When plants were grown in a common garden environment, an altitudinal pattern for flower abnormalities was no longer detected. However, altitudinal patterns for leaf length and scape height were maintained, albeit weaker than in the field. This indicates heritable variation for these morphological traits; the altitudinal patterns are likely to reflect the effects of selection by environmental factors that vary with altitude. Selection pressures remain to be identified but have generated both cogradient and countergradient patterns of variation. [source]