Alternative Hosts (alternative + hosts)

Distribution by Scientific Domains


Selected Abstracts


Passage through alternative hosts changes the fitness of Fusarium graminearum and Fusarium pseudograminearum

ENVIRONMENTAL MICROBIOLOGY, Issue 2 2007
Olufemi A. Akinsanmi
Summary Species of the necrotrophic fungal pathogen Fusarium that cause head blight and crown rot of cereals including wheat also infect a number of alternative host plants. This raises the prospect of more damaging pathogen strains originating and persisting as highly successful saprophytes on hosts other than wheat. The immediate impact on pathogenic (aggressiveness) and saprophytic (growth rate and fecundity) behaviour of six isolates with low, moderate or high initial aggressiveness was examined in two species of Fusarium after their passage through 10 alternative plant hosts. One passage through alternative hosts significantly reduced the pathogenic fitness of most isolates, but this change was not associated with a concomitant change in their overall saprophytic behaviour. The overall weak association between aggressiveness, fecundity and growth rate both before and after passage through the alternative hosts indicate that pathogenic and saprophytic fitness traits may be independently controlled in both Fusarium species. Thus, there was no trade-off between pathogenic and saprophytic fitness in these necrotrophic plant pathogens. [source]


SEQUENTIAL RAPID ADAPTATION OF INDIGENOUS PARASITOID WASPS TO THE INVASIVE BUTTERFLY PIERIS BRASSICAE

EVOLUTION, Issue 8 2007
Shingo Tanaka
The introduction of a new species can change the characteristics of other species within a community. These changes may affect discontiguous trophic levels via adjacent trophic levels. The invasion of an exotic host species may provide the opportunity to observe the dynamics of changing interspecific interactions among parasitoids belonging to different trophic levels. The exotic large white butterfly Pieris brassicae invaded Hokkaido Island, Japan, and quickly spread throughout the island. Prior to the invasion, the small white butterfly P. rapae was the host of the primary parasitoid Cotesia glomerata, on which both the larval hyperparasitoid Baryscapus galactopus and the pupal hyperparasitoid Trichomalopsis apanteroctena depended. At the time of the invasion, C. glomerata generally laid eggs exclusively in P. rapae. During the five years following the invasion, however, the clutch size of C. glomerata in P. rapae gradually decreased, whereas the clutch size in P. brassicae increased. The field results corresponded well with laboratory experiments showing an increase in the rate of parasitism in P. brassicae. The host expansion of C. glomerata provided the two hyperparasitoids with an opportunity to choose between alternative hosts, that is, C. glomerata within P. brassicae and C. glomerata within P. rapae. Indeed, the pupal hyperparasitoid T. apanteroctena shifted its preference gradually to C. glomerata in P. brassicae, whereas the larval hyperparasitoid B. galactopus maintained a preference for C. glomerata in P. rapae. These changes in host preference may result from differential suitability of the two host types. The larval hyperparasitoid preferred C. glomerata within P. rapae to C. glomerata within P. brassicae, presumably because P. brassicae larvae attacked aggressively, thereby hindering the parasitization, whereas the pupal hyperparasitoid could take advantage of the competition-free resource by shifting its host preference. Consequently, the invasion of P. brassicae has changed the host use of the primary parasitoid C. glomerata and the pupal hyperparasitoid T. apanteroctena within a very short time. [source]


Reaction of Certain Solanaceous and Asteraceous Plant Species to Inoculation with Phytophthora infestans in Cameroon

JOURNAL OF PHYTOPATHOLOGY, Issue 6 2004
D. A. Fontem
Abstract Experiments were conducted to detect potential hosts of Phytophthora infestans, causal agent of potato late blight among weeds occurring in Cameroon. Isolates of P. infestans isolated from garden huckleberry (Solanum scabrum), potato (S. tuberosum) and tomato (S. lycopersicon) were inoculated on detached leaves of 12 solanaceous and 14 asteraceous species collected from the potato agroecosystem in the western highlands of Cameroon. Isolates of P. infestans from huckleberry and potato infected the same host plants as well as gboma eggplant (S. macrocarpon) and two asteraceous weeds; Billy goatweed (Ageratum conyzoides) and Dichrocephala (Dichrocephala integrifolia). Inoculum from potato caused late blight symptoms on haemorrhage plant (Aspilia africana); while inoculum from tomato resulted in late blight on worowo (Solanecio biafrae). This is the first report of late blight infection on S. macrocarpon, A. conyzoides, Sol. biafrae and Asp. africana in Cameroon. The research results indicate that some asteraceous and solanaceous weeds may be alternative hosts of P. infestans in the potato agroecosystem. [source]


Vectors and alternative hosts of Tobacco yellow dwarf virus in southeastern Australia

ANNALS OF APPLIED BIOLOGY, Issue 1 2010
P. Tr, bicki
Factors that determine the epidemiology of Tobacco yellow dwarf virus (TbYDV), including alternative host plants and insect vector(s), were assessed over three consecutive growing seasons at four field sites in Northeastern Victoria in commercial tobacco growing properties. In addition, these factors were assessed for one growing season at three bean growing properties. Overall, 23 leafhopper species were identified at the 7 sites, with Orosius orientalis as the predominant leafhopper. Of the leafhoppers collected, only O. orientalis and Anzygina zealandica tested positive for TbYDV by polymerase chain reaction (PCR). The population dynamics of O. orientalis was assessed using sweep net sampling over three growing seasons and a trimodal distribution was observed. Despite large numbers of O. orientalis occurring early in the growing season (September,October), TbYDV was only detected in these leafhoppers between late November and end of January. The peaks in the detection of TbYDV in O. orientalis correlated with the observation of disease symptoms in tobacco and bean and were associated with warmer temperatures and lower rainfall. Spatial and temporal distribution of vegetation at selected sites was determined using quadrat sampling. Of the 40 plant species identified, TbYDV was detected only in four dicotyledonous species, Amaranthus retroflexus, Phaseolus vulgaris, Nicotiana tabacum and Raphanus raphanistrum. The proportion of host and non-host availability for leafhoppers was associated with climatic conditions. [source]


Native saltbush (Rhagodia spp.; Chenopodiaceae) as a potential reservoir for agromyzid leafminer parasitoids on horticultural farms

AUSTRALIAN JOURNAL OF ENTOMOLOGY, Issue 1 2010
Glenys Wood
Abstract Australia has to date been spared the introduction of highly polyphagous invasive pest agromyzid leafminers; however, their arrival and spread should be considered imminent. To develop a pre-emptive control strategy to deal with exotic leafminer outbreaks the first step is to identify Australian leafmining flies, their plant hosts and their parasitoids to gain an understanding of their population dynamics. Native vegetation may be providing resources for beneficial parasitic wasps plus access to alternative hosts and refuge from disturbance. Here, two Australian endemic saltbushes (Rhagodia candolleana and R. parabolica, Caryophyllales: Chenopodiaceae) have been investigated for their potential to act as reservoirs for endemic agromyzid hosts and their key parasitoids. Mined leaves of the two Rhagodia species were sampled on two commercial horticultural properties in the Virginia horticulture area on the Northern Adelaide Plains between September 2007 and April 2008. Leaf mines on both Rhagodia species were caused by an endemic leafminer species, putatively Phytoliriomyza praecellens Spencer (Diptera: Agromyzidae). Ten species of parasitoids (all Hymenoptera) emerged from R. candolleana mines and seven different species from R. parabolica mines, mainly from the family Eulophidae and with some Pteromalidae and Braconidae. Trigonogastrella Girault sp. (Pteromalidae), Zagrammosoma latilineatum Ubaidillah and Hemiptarsenus varicornis Girault (both Eulophidae) were the most abundant species on R. candolleana, whereas two Opius Wesmael spp. (Braconidae) were the most abundant species on R. parabolica. Findings from this survey suggest an opportunity to plant purpose-designed refuges that could play a role in conservation biological control as part of an Integrated Pest Management strategy developed prior to incursion of pest leafminers such as Liriomyza species. [source]