Altered Localization (altered + localization)

Distribution by Scientific Domains


Selected Abstracts


Altered localization of gene expression in both ectoderm and mesoderm is associated with a murine strain difference in retinoic acid,induced forelimb ectrodactyly,

BIRTH DEFECTS RESEARCH, Issue 6 2007
Hirohito Shimizu
Abstract BACKGROUND: Defects in digit number or fusion as a teratogenic response are well documented in humans and intensively studied in various mouse models. Maternal exposure to excess levels of all- trans -retinoic acid (RA) at gestational day 9.5 induces postaxial ectrodactyly (digit loss) in the murine C57BL/6N strain but not in the SWV/Fnn strain. METHODS: Whole-mount in situ hybridization was used to examine the differential expression of limb patterning genes at the transcriptional level between the two mouse strains following the maternal exposure to a teratogenic level of RA. The detection of a gene with altered expression was followed by either the evaluation of other genes that were synexpressed or with an assessment of downstream genes. RESULTS: In the C57BL/6N limb bud following maternal RA administration, gene-specific perturbations were observed within hours of the RA injection in the posterior pre-AER (apical ectodermal ridge) (Fgf8, Dlx3, Bmp4, Sp8, but not Dlx2 or p63), whereas these genes were normally expressed in the SWV/Fnn limb bud. Furthermore, although RA caused comparable reductions of Shh expression between the strains in the 12 h after administration, some Shh downstream genes were differentially expressed (e.g., Gli1, Ptc, and Hoxd13), whereas others were not (e.g., Fgf4, Bmp4, and Gremlin). CONCLUSIONS: It is proposed that altered gene expression in both pre-AER and mesoderm is involved in the pathogenesis of postaxial digit loss, and that because the alterations in the pre-AER occur relatively early in the temporal sequence of events, those changes are candidates for an initiating factor in the malformation. Birth Defects Research (Part A) 2007. © 2007 Wiley-Liss, Inc. [source]


The role of radixin in altered localization of canalicular conjugate export pump Mrp2 in cholestatic rat liver

HEPATOLOGY RESEARCH, Issue 2 2008
Hideyuki Kojima
Aim:, Cholestasis has been associated with the endocytic retrieval of multidrug resistance protein 2 (Mrp2), but its mechanism is still unclear. Recent studies have indicated that radixin, a cross-linker between the actin filaments and membrane proteins, may be activated by phosphorylation and may be required for the canalicular localization of Mrp2. Methods:, We investigated the role of radixin in the altered localization of Mrp2 in rat models of intrahepatic (ethinyl estradiol treatment) and extrahepatic (bile duct ligation) cholestasis using immunofluorescence microscopy. The changes in localization and expression were analyzed using Scion Image for Windows. Results:, In both models, Mrp2 was localized outside as well as inside the ZO-1 staining, indicating partial dislocation from the canalicular membrane. In contrast to the steep elevation of the immunostaining intensity curves for Mrp2 in the controls, the corresponding curves in both models were broadened and flattened, confirming endocytic retrieval into the hepatocytes. Mrp2 and radixin were colocalized at the canalicular domain in the controls, whereas in both cholestatic rats they were dissociated at some canaliculi, indicating the disturbed colocalization of Mrp2 and radixin in cholestasis. The fluorescence of phosphorylated radixin, an active form of radixin, markedly decreased in both cholestatic models, which was supported by the reduced peak fluorescence intensities. Conclusion:, The disturbed colocalization of Mrp2 and radixin may contribute to the endocytic retrieval of Mrp2 in cholestasis due to the failure to anchor Mrp2 in the canalicular membrane, in which the phosphorylated radixin may play a major role. [source]


Ablation of Systemic Phosphate-Regulating Gene Fibroblast Growth Factor 23 (Fgf23) Compromises the Dentoalveolar Complex

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 7 2010
E.Y. Chu
Abstract Fibroblast growth factor-23 (FGF23) is a hormone that modulates circulating phosphate (Pi) levels by controlling Pi reabsorption from the kidneys. When FGF23 levels are deficient, as in tumoral calcinosis patients, hyperphosphatemia ensues. We show here in a murine model that Fgf23 ablation disrupted morphology and protein expression within the dentoalveolar complex. Ectopic matrix formation in pulp chambers, odontoblast layer disruption, narrowing of periodontal ligament space, and alteration of cementum structure were observed in histological and electron microscopy sections. Because serum Pi levels are dramatically elevated in Fgf23,/,, we assayed for apoptosis and expression of members from the small integrin-binding ligand, N-linked glycoprotein (SIBLING) family, both of which are sensitive to elevated Piin vitro. Unlike X-linked hypophosphatemic (Hyp) and wild-type (WT) specimens, numerous apoptotic osteocytes and osteoblasts were detected in Fgf23,/, specimens. Further, in comparison to Hyp and WT samples, decreased bone sialoprotein and elevated dentin matrix protein-1 protein levels were observed in cementum of Fgf23,/, mice. Additional dentin-associated proteins, such as dentin sialoprotein and dentin phosphoprotein, exhibited altered localization in both Fgf23,/, and Hyp samples. Based on these results, we propose that FGF23 and (Pi) homeostasis play a significant role in maintenance of the dentoalveolar complex. Anat Rec 293:1214,1226, 2010. © 2010 Wiley-Liss, Inc. [source]


The proapoptotic influenza A virus protein PB1-F2 regulates viral polymerase activity by interaction with the PB1 protein

CELLULAR MICROBIOLOGY, Issue 5 2008
Igor Mazur
Summary The 11th influenza A virus protein PB1-F2 was previously shown to enhance apoptosis in response to cytotoxic stimuli. The 87 amino acid protein that is encoded by an alternative reading frame of the PB1 polymerase gene was described to localize to mitochondria consistent with its proapoptotic function. However, PB1-F2 is also found diffusely distributed in the cytoplasm and in the nucleus suggesting additional functions of the protein. Here we show that PB1-F2 colocalizes and directly interacts with the viral PB1 polymerase protein. Lack of PB1-F2 during infection resulted in an altered localization of PB1 and decreased viral polymerase activity. Consequently, mutant viruses devoid of a functional PB1-F2 reading frame exhibited a small plaque phenotype. Thus, we have identified a novel function of PB1-F2 as an indirect regulator of the influenza virus polymerase activity via its interaction with PB1. [source]