Home About us Contact | |||
Altered Gene (altered + gene)
Terms modified by Altered Gene Selected AbstractsThe Lmgpi15 gene, encoding a component of the glycosylphosphatidylinositol anchor biosynthesis pathway, is required for morphogenesis and pathogenicity in Leptosphaeria maculansNEW PHYTOLOGIST, Issue 4 2008Estelle Remy Summary ,,Random insertional mutagenesis was used to investigate pathogenicity determinants in Leptosphaeria maculans. One tagged nonpathogenic mutant, termed m20, was analysed in detail here. ,,The mutant phenotype was investigated by microscopic analyses of infected plant tissues and in vitro growth assays. Complementation and silencing experiments were used to identify the altered gene. Its function was determined by bioinformatics analyses, cell biology experiments and functional studies. ,,The mutant was blocked at the invasive growth phase after an unaffected initial penetration stage, and displayed a reduced growth rate and an aberrant hyphal morphology in vitro. The T-DNA insertion occurred in the intergenic region between two head-to-tail genes, leading to a complex deregulation of their expression. The unique gene accounting for the mutant phenotype was suggested to be the orthologue of the poorly conserved Saccharomyces cerevisiae gpi15, which encodes for one component of the glycosylphosphatidylinositol (GPI) anchor biosynthesis pathway. Consistent with this predicted function, a functional translational fusion with the green fluorescent protein (GFP) was targeted to the endoplasmic reticulum. Moreover, the mutant exhibited an altered cell wall and addition of glucosamine relieved growth defects. ,,It is concluded that the GPI anchor biosynthetic pathway is required for morphogenesis, cell wall integrity and pathogenicity in Leptosphaeria maculans. [source] Flower visitors and pollination in the Oriental (Indomalayan) RegionBIOLOGICAL REVIEWS, Issue 3 2004Richard T. Corlett ABSTRACT Current knowledge of flower visitors and pollination in the Oriental Region is summarised. Much less is known about pollination than seed dispersal and the coverage of habitats and taxa in the region is very uneven. The available evidence suggests that pollination in lowland forests is dominated by highly social bees (mainly Trigona and Apis species), with beetles probably the next most important group, followed by other bees and flies. In comparison with the better-studied Neotropics, large solitary bees, moths, Lepidoptera and vertebrates are relatively less important. These differences are greatest in the canopy of the lowland dipterocarp forests of Southeast Asia, where they probably reflect the unique temporal pattern of floral resource availability resulting from,general flowering'at supra-annual intervals. Apis bees (but not Trigona species) are also important in most montane, subtropical and non-forest habitats. Apart from the figs (Ficus spp.), there are few well-documented examples of plant species visited by a single potential pollinator and most plant-pollinator relationships in the region appear to be relatively generalised. The small sizes of most pollinators and the absence of direct human exploitation probably make pollination mutualisms less vulnerable to failure as a result of human impacts than dispersal mutualisms, but more subtle impacts, as a result of altered gene flows, are likely to be widespread. On current evidence, pollination systems in the Oriental Region do not require any specific conservation action, but this review reinforces arguments for making the preservation (or restoration) of habitat connectivity the major focus of Oriental conservation. [source] Reprogramming of genetic networks during initiation of the Fetal Alcohol Syndrome,DEVELOPMENTAL DYNAMICS, Issue 2 2007Maia L. Green Abstract Fetal Alcohol Spectrum Disorders (FASD) are birth defects that result from maternal alcohol use. We used a non a priori approach to prioritize candidate pathways during alcohol-induced teratogenicity in early mouse embryos. Two C57BL/6 substrains (B6J, B6N) served as the basis for study. Dosing pregnant dams with alcohol (2× 2.9 g/kg ethanol spaced 4 hr on day 8) induced FASD in B6J at a higher incidence than B6N embryos. Counter-exposure to PK11195 (4 mg/kg) significantly protected B6J embryos but slightly promoted FASD in B6N embryos. Microarray transcript profiling was performed on the embryonic headfold 3 hr after the first maternal alcohol injection (GEO data series accession GSE1074). This analysis revealed metabolic and cellular reprogramming that was substrain-specific and/or PK11195-dependent. Mapping ethanol-responsive KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways revealed down-regulation of ribosomal proteins and proteasome, and up-regulation of glycolysis and pentose phosphate pathway in B6N embryos; and significant up-regulation of tight junction, focal adhesion, adherens junction, and regulation of the actin cytoskeleton (and near-significant up-regulation of Wnt signaling and apoptosis) pathways in both substrains. Expression networks constructed computationally from these altered genes identified entry points for EtOH at several hubs (MAPK1, ALDH3A2, CD14, PFKM, TNFRSF1A, RPS6, IGF1, EGFR, PTEN) and for PK11195 at AKT1. Our findings are consistent with the growing view that developmental exposure to alcohol alters common signaling pathways linking receptor activation to cytoskeletal reorganization. The programmatic shift in cell motility and metabolic capacity further implies cell signals and responses that are integrated by the mitochondrial recognition site for PK11195. Developmental Dynamics 236:613,631, 2007. © 2007 Wiley-Liss, Inc. [source] ApcMin/+ mouse model of colon cancer: Gene expression profiling in tumorsJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2004Daniel Leclerc Abstract The ApcMin/+ mouse is a popular animal model for studies of human colon cancer, but the molecular changes associated with neoplasia in this system have only been partially characterized. Our aim was to identify novel genes involved in tumorigenesis in this model. RNA from intestinal adenomas and from pre-neoplastic small intestine were prepared from six ApcMin/+ mice. The tumor transcriptomes were analyzed with high-density oligonucleotide microarrays representing ,12,000 probe sets; we compared their profiles with those of matched pre-neoplastic intestine. Stringent analysis revealed reproducible changes for 98 probe sets representing 90 genes, including novel observations regarding 50 genes whose involvement in this mouse model has never been reported. In addition to the expected changes in growth regulatory genes, the altered gene products could be assigned to four functional groupings that should enhance tumorigenesis: metabolic changes that would result in a high rate of glycolysis, alterations in enzymes involved in reactive oxygen species or carcinogen metabolism, cytoskeletal elements, and proteins involved in tumor invasion or angiogenesis. A fifth group consisted of expression changes that might restrict tumor progression, suggesting that the adenomatous state reflects a balance of pro- and anti-tumorigenic factors. Since many of the altered genes had not previously been reported to be involved in any tumorigenic processes, our observations provide a host of new candidates for potential modulation to prevent or treat intestinal neoplasia. Supplementary material for this article can be found at http://www.mrw.interscience.wiley.com/suppmat/0730-2312/suppmat/v93.html. © 2004 Wiley-Liss, Inc. [source] |