Altai Mountains (altai + mountain)

Distribution by Scientific Domains


Selected Abstracts


Contrasts in the Quaternary of mid-North America and mid-Eurasia: notes on Quaternary landscapes of western Siberia,

JOURNAL OF QUATERNARY SCIENCE, Issue 7-8 2005
H. E. Wright
Abstract The West Siberian Plain was formed by marine deposits that extended from the Mediterranean basin to the arctic. Tectonic action later produced a striking series of long straight NE,SW grabens in the southern part of the plain. Pleistocene advance of the Kara ice sheet onto the continent resulted in blockage of the Ob and Yenisey rivers to form huge proglacial lakes that drained through these grabens south via the Turgay Pass and the Aral, Caspian, Black and Mediterranean seas to the North Atlantic Ocean, but during the Last Glacial Maximum (late Weichselian, isotope stage 2), the Kara ice sheet did not advance onto the continent in northwestern Siberia. The Altai Mountains, which bound the West Siberian Plain on the south, contained large deep intermontane ice-dammed lakes, which drained catastrophically when the ice dams broke, forming giant ripples on the basin floors. Pollen studies of glacial lakes indicate that the Lateglacial steppe vegetation and dry climatic conditions continued into the early Holocene as summer insolation maintained high levels. Permafrost development on a drained lake floor in the western Altai Mountains resulted in the formation of groups of small pingos. In North America the growth and wastage of the huge Laurentide ice sheet had an indirect role in the climatic history of western Siberia during the Glacial and Lateglacial periods, after which the climate was more affected directly by insolation changes, whereas in North America in the early Holocene the insolation factor was coupled with the climatic effects of the slow wastage of the ice sheet, and the time of maximum dryness was postponed until the mid-Holocene. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Refugia, differentiation and postglacial migration in arctic-alpine Eurasia, exemplified by the mountain avens (Dryas octopetala L.)

MOLECULAR ECOLOGY, Issue 7 2006
INGER SKREDE
Abstract Many arctic-alpine organisms have vast present-day ranges across Eurasia, but their history of refugial isolation, differentiation and postglacial expansion is poorly understood. The mountain avens, Dryas octopetala sensu lato, is a long-lived, wind-dispersed, diploid shrub forming one of the most important components of Eurasian tundras and heaths in terms of biomass. We address differentiation and migration history of the species with emphasis on the western and northern Eurasian parts of its distribution area, also including some East Greenlandic and North American populations (partly referred to as the closely related D. integrifolia M. Vahl). We analysed 459 plants from 52 populations for 155 amplified fragment length polymorphisms (AFLP) markers. The Eurasian plants were separated into two main groups, probably reflecting isolation and expansion from two major glacial refugia, situated south and east of the North European ice sheets, respectively. Virtually all of northwestern Europe as well as East Greenland have been colonized by the Southern lineage, whereas northwest Russia, the Tatra Mountains and the arctic archipelago of Svalbard have been colonized by the Eastern lineage. The data indicate a contact zone between the two lineages in northern Scandinavia and possibly in the Tatra Mountains. The two single populations analysed from the Caucasus and Altai Mountains were most closely related to the Eastern lineage but were strongly divergent from the remaining eastern populations, suggesting survival in separate refugia at least during the last glaciation. The North American populations grouped with those from East Greenland, irrespective of their taxonomic affiliation, but this may be caused by independent hybridization with D. integrifolia and therefore not reflect the true relationship between populations from these areas. [source]


The lower limit of mountain permafrost in the Russian Altai Mountains

PERMAFROST AND PERIGLACIAL PROCESSES, Issue 2 2007
Kotaro Fukui
Abstract Permafrost-indicator features, such as rock glaciers, pingos and ice-wedge polygons, exist at many locations in and around the South Chuyskiy Range of the Russian Altai Mountains (,50°N). The distribution of these features suggests that the altitudinal range of the sporadic/patchy permafrost zones and the widespread discontinuous/continuous permafrost zones are 1800,2000,m ASL and above 2000,m ASL, respectively. The lower limit of discontinuous permafrost is approximately 200,m lower than in the Mongolian Altai, which are at a similar latitude. Cold air drainage and/or temperature inversions during winter within U-shaped valleys together with a thin snow cover because of low precipitation during the same season likely cause the lower permafrost limit in the study area. The calibrated 14C ages of tree remnants found in a rock glacier front in the lower Akkol valley were 293,±,21 years BP and 548,±,21 years BP. Given the time of emergence from beneath the Sofiyskiy glacier, this rock glacier developed between 3800,2600 and 550 years BP. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Distribution and status of medicinal leeches (genus Hirudo) in the Western Palaearctic: anthropogenic, ecological, or historical effects?

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 2 2010
Serge Utevsky
Abstract 1. Distribution and status of medicinal leeches were re-considered in the light of the new taxonomy recognizing four Western Palaearctic species: Hirudo medicinalis, Hirudo verbana, Hirudo orientalis and Hirudo troctina. 2. Recent records and new data obtained on expeditions to Ukraine, Russia, Azerbaijan, Kazakhstan, Uzbekistan and the Western Balkans were mapped to obtain an up-to-date overview of the distribution. 3. Three hypotheses explaining the current ranges of all Hirudo species were tested. The ecological hypothesis, suggesting a strong impact of large-scale environmental factors, received the highest support, while anthropogenic influence was minimal, and no historical patterns of refugia and colonization were detected. 4. Mapped localities of all Hirudo species show extensive, belt-shaped ranges extending from east to west. H. medicinalis is distributed from Britain and southern Norway to the southern Urals and probably as far as the Altai Mountains, occupying the deciduous arboreal zone. H. verbana has been recorded from Switzerland and Italy to Turkey and Uzbekistan, which largely corresponds to the Mediterranean and sub-boreal steppe zone. H. orientalis is associated with mountainous areas in the sub-boreal eremial zone and occurs in Transcaucasian countries, Iran and Central Asia. H. troctina has been found in north-western Africa and Spain in the Mediterranean zone. 5. Based on the data gathered, and considering real and potential threats, global IUCN category Near Threatened is proposed for H. medicinalis, H. verbana, and H. orientalis, while H. troctina can only be assigned to category Data Deficient. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Comparative phylogeography of four Apodemus species (Mammalia: Rodentia) in the Asian Far East: evidence of Quaternary climatic changes in their genetic structure

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2010
HÉLA SAKKA
The phylogeography of four Apodemus species (Apodemus agrarius, Apodemus peninsulae, Apodemus latronum, and Apodemus draco) was studied in the Far East of Asia, based on sequences of the mitochondrial DNA cytochrome b gene. The results obtained show the existence of many different genetic lineages within the studied Apodemus species, suggesting the isolation and differentiation of populations in multiple refuge areas. Higher genetic diversities in some regions such as Yunnan, Sichuan (China), and eastern Russia suggest these areas are potential refuges for these species. The existence of such complex genetic structures could be linked to the presence of many biogeographic barriers (Himalaya Mountains, Tien-shan Mountains, Altai Mountains, Tibetan Plateau, Gobi desert, Yunnan Guizhou Plateau, Dzungaria basin, and others) in these regions, which were probably reinforced during the Quaternary climate changes. These barriers also played an important role concerning the low dispersal abilities of the two studied Apodemus species adapted to forest habitats (A. latronum and A. draco) with respect to colonizing regions other than China. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 797,821. [source]