Home About us Contact | |||
Growing Species (growing + species)
Selected AbstractsSpecies pool size and invasibility of island communities: a null model of sampling effectsECOLOGY LETTERS, Issue 9 2005Herben Abstract The success of alien species on oceanic islands is considered to be one of the classic observed patterns in ecology. Explanations for this pattern are based on lower species richness on islands and the lower resistance of species-poor communities to invaders, but this argument needs re-examination. The important difference between islands and mainland is in the size of species pools, not in local species richness; invasibility of islands should therefore be addressed in terms of differences in species pools. Here I examine whether differences in species pools can affect invasibility in a lottery model with pools of identical native and exotic species. While in a neutral model with all species identical, invasibility does not depend on the species pool, a model with non-zero variation in population growth rates predicts higher invasibility of communities of smaller pools. This is because of species sampling; drawing species from larger pools increases the probability that an assemblage will include fast growing species. Such assemblages are more likely to exclude random invaders. This constitutes a mechanism through which smaller species pools (such as those of isolated islands) can directly underlie differences in invasibility. [source] Studying spatial and temporal dynamics of sward structure at low stocking densities: the use of an extended rising-plate-meter methodGRASS & FORAGE SCIENCE, Issue 4 2003O. Correll Abstract An extended rising-plate-meter method was used to study the spatial and temporal variability of the sward structure of extensively managed pastures over a grazing season. Two treatments of a long-term grazing experiment with heifers were investigated: extensive continuous grazing (EG) with a target sward height of 10 cm and intensive continuous grazing (IG) with a target sward height of 5 cm. Compressed sward height and related herbage mass (HM), dominant plant species and stage of development of phenology were determined at weekly or twice weekly intervals at fixed measuring points. The results demonstrated a strong variability in sward height and HM, especially on the EG treatment. The botanical composition of the standing herbage differed between treatments and between patches of different heights within the same treatment. In areas with a short sward, the herbage was predominantly composed of Agrostis capillaris, Festuca rubra and Trifolium repens. It was more evenly composed and also included taller growing species, such as Alopecurus pratensis and Galium mollugo, in areas with a tall sward. The area potentially available for reproductive development was high in the EG treatment and low in the IG treatment. The method employed proved suitable to provide a detailed description of the dynamics of the sward structure. [source] The biology of the bigeye grenadier at South GeorgiaJOURNAL OF FISH BIOLOGY, Issue 6 2004S. A. Morley The biology of the bigeye grenadier Macrourus holotrachys caught as by-catch in the Patagonian toothfish Dissostichus eleginoides longline fishery conducted around South Georgia was investigated to improve data available for fisheries management. Age estimates suggest that M. holotrachys is a moderately slow growing species (K = 0·10), reaching ages of >30 years and attaining total lengths (LT) >80 cm (L, = 33). The size at which 50% of females had started to mature (Lint50) for M. holotrachys was 21 cm pre-anal length (LPA) and occurred at c. 9 years old. Estimates of natural mortality and Pauly's growth performance index were found to be low (M = 0·09 and , = 2·82 respectively). Gonad maturity stage was described from macroscopic and histological investigation. Mature ovaries had oocytes at all developmental stages with between 22 and 55% likely to be spawned each year. Absolute fecundity ranged from 22 000 to 260 000 eggs and was positively correlated with both pre-anal length and mass. A highly skewed sex ratio of 32 : 1, females : males, was found for specimens caught by longlines but not for a small sample of shallower trawl-caught specimens. It is suggested that females are far more susceptible to longline capture than males. Macrourus holotrachys is a bentho-pelagic predator and scavenger that feeds on a wide range of fishes and invertebrates. The fish are long lived, slow-growing species typical of deep-water grenadiers; fisheries management strategies should reflect their probable susceptibility to overfishing. [source] Hyperbranched polyethers by ring-opening polymerization: Contribution of activated monomer mechanismJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 4 2003Przemys, aw Kubisa Abstract Propagation in the cationic ring-opening polymerization of cyclic ethers involves nucleophilic attack of oxygen atoms from the monomer molecules on the cationic growing species (oxonium ions). Such a mechanism is known as the active chain-end mechanism. If hydroxyl groups containing compounds are present in the system, oxygen atoms of HO groups may compete with cyclic ether oxygen atoms of monomer molecules in reaction with oxonium ions. At the proper conditions, this reaction may dominate, and propagation may proceed by the activated monomer mechanism, that is, by subsequent addition of protonated monomer molecules to HO terminated macromolecules. Both mechanisms may contribute to the propagation in the cationic polymerization of monomers containing both functions (i.e., cyclic ether group and hydroxyl groups) within the same molecule. In this article, the mechanism of polymerization of three- and four-membered cyclic ethers containing hydroxymethyl substituents is discussed in terms of competition between two possible mechanisms of propagation that governs the structure of the products,branched polyethers containing multiple terminal hydroxymethyl groups. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 457,468, 2003 [source] Leaf dry matter content and lateral spread predict response to land use change for six subalpine grassland speciesJOURNAL OF VEGETATION SCIENCE, Issue 2 2007Nicolas Gross Abstract Question: Land-use change has a major impact on terrestrial plant communities by affecting fertility and disturbance. We test how particular combinations of plant functional traits can predict species responses to these factors and their abundance in the field by examining whether trade-offs at the trait level (fundamental trade-offs) are linked to trade-offs at the response level (secondary trade-offs). Location: Central French Alps. Methods: We conducted a pot experiment in which we characterized plant trait syndromes by measuring whole plant and leaf traits for six dominant species, originating from contrasting subalpine grassland types. We characterized their response to nutrient availability, shading and clipping. We quantified factors linked with different land usage in the field to test the relevance of our experimental treatments. Results: We showed that land management affected nutrient concentration in soil, light availability and disturbance intensity. We identified particular suites of traits linked to plant stature and leaf structure which were associated with species responses to these environmental factors. Leaf dry matter content separates fast and slow growing species. Height and lateral spread separated tolerant and intolerant species to shade and clipping. Discussion and Conclusion: Two fundamental trade-offs based on stature traits and leaf traits were linked to two secondary trade-offs based on response to fertilization shade and mowing. Based on these trade-offs, we discuss four different species strategies which could explain and predict species distributions and traits syndrome at community scale under different land-uses in subalpine grasslands. [source] A comparative study of growth, skeletal development and eggshell composition in some species of birdsJOURNAL OF ZOOLOGY, Issue 4 2004Jonas Blom Abstract Some studies of birds suggest that the development of the skeleton may invoke a constraint on the rate of postnatal growth. Other studies have shown that the eggshell is the major source of calcium for skeletal development of the embryo. To test whether avian growth rate is indeed associated with different patterns of skeletal development, we compared the degree of skeletal ossification of the long bones of the wing and the leg of one slowly growing precocial species (quail Coturnix japonica) with that of two rapidly growing altricial species (starling Sturnus vulgaris and fieldfare Turdus pilaris). The degree of skeletal ossification of the long bones of the wings and legs of lines of quails that had undergone long-term selection for high- and low-growth rate, respectively, also was compared with a non-selected control line. Next, the fine structure of the inner eggshell surface (mammillary layer) of both pre- and post-incubated eggs, i.e. before and after embryonic development/calcium removal was compared. The data show that the skeleton of the more rapidly growing species and lines was less ossified than that of the more slowly growing ones. This difference appeared to be associated with different rates of calcium removal from the eggshell. Removal was more extensive in eggs of quail than in eggs of starling and fieldfare, i.e. more extensive in shells with a high number of mammillary tips per unit of surface area than in shells with a lower number. It is therefore concluded that growth rate is of fundamental importance for the pattern of skeletal development. Moreover, the mammillary density varies between different bird species, it is suggested, in order to support the different rates of calcium removal by developing embryos. [source] |