Home About us Contact | |||
Growing Plants (growing + plant)
Selected AbstractsALKALOID COMPOSITION OF LUPINUS CAMPESTRIS FROM MEXICOJOURNAL OF FOOD BIOCHEMISTRY, Issue 2 2001J. MARTÍNEZ-HERRERA ABSTRACT The content of quinolizidine alkaloids (QA) in Lupinus campestris, Fabaceae family, was analyzed by Gas Chromatography-Mass Spectrometry (GC-MS), Samples of various organs of Lupinus campestris collected at different monthly stages of the growing plant, were subjected to extraction in a Merck Extrelut column. The quinolizidine alkaloid patterns of stems, leaves, flowers, pods and seeds were assessed and then identified and quantified by GC. Alkaloid structures were identified according to their mass fragmentation patterns, in combination with their indicative Kovats retention index. Alkaloids found in several developmental stages of the plant were mainly: aphyllidine, 5, 6-dehydrolupanine, aphylline, dehydro-oxosparteine, lupanine, ,-isolupanine, hydroxyaphylline and hydroxyaphyllidine, plus two alkaloids that -were not identified. During the third month the relative abundance of total alkaloids were highest. The main alkaloids found in seeds were hydroxyaphylline and hydroxyaphyllidine. [source] From soil to gut: Bacillus cereus and its food poisoning toxinsFEMS MICROBIOLOGY REVIEWS, Issue 4 2008Lotte P. Stenfors Arnesen Abstract Bacillus cereus is widespread in nature and frequently isolated from soil and growing plants, but it is also well adapted for growth in the intestinal tract of insects and mammals. From these habitats it is easily spread to foods, where it may cause an emetic or a diarrhoeal type of food-associated illness that is becoming increasingly important in the industrialized world. The emetic disease is a food intoxication caused by cereulide, a small ring-formed dodecadepsipeptide. Similar to the virulence determinants that distinguish Bacillus thuringiensis and Bacillus anthracis from B. cereus, the genetic determinants of cereulide are plasmid-borne. The diarrhoeal syndrome of B. cereus is an infection caused by vegetative cells, ingested as viable cells or spores, thought to produce protein enterotoxins in the small intestine. Three pore-forming cytotoxins have been associated with diarrhoeal disease: haemolysin BL (Hbl), nonhaemolytic enterotoxin (Nhe) and cytotoxin K. Hbl and Nhe are homologous three-component toxins, which appear to be related to the monooligomeric toxin cytolysin A found in Escherichia coli. This review will focus on the toxins associated with foodborne diseases frequently caused by B. cereus. The disease characteristics are described, and recent findings regarding the associated toxins are discussed, as well as the present knowledge on virulence regulation. [source] Field performance and seasonal changes in the efficacy against Helicoverpa armigera (Hübner) of transgenic cotton expressing the insecticidal protein vip3AAGRICULTURAL AND FOREST ENTOMOLOGY, Issue 2 2007Danny J. Llewellyn Abstract 1,Three years of field experiments in Eastern Australia were carried out on transgenic cotton (Gossypium hirsutum L.) event Cot102 expressing the insecticidal protein gene vip3A from Bacillus thuringiensis to evaluate performance against Helicoverpa armigera Hübner. Efficacy, defined as the capacity of plant tissues to induce larval mortality, was determined with a well-validated leaf bioassay fortnightly through the growth cycle of the cotton in each season. 2,Cot102 plants proved highly efficacious against H. armigera, particularly early in the season, although their efficacy declined as the season progressed, in a manner similar to, but not as dramatic as, that observed with commercial Cry1Ac expressing cotton (Bollgard or Ingard cotton). 3,Field surveys indicated that very few larvae survived beyond first instar on intact growing plants. 4,In one season efficacy declined for a period of approximately 20 days after a cool wet period, suggesting that this may have had a detrimental effect on the expression or efficacy of the gene, but this will need to be verified in further replicated trials. 5,Quantitative enzyme-linked immunosorbent assays indicated that there was no dramatic reduction in production of the vip3A protein during growth and maturation of the crop, suggesting that other host plant factors were affecting the efficacy of the insecticidal protein in the insect gut. 6,These data indicate that Cot102 cotton would provide a useful alternative to Bollgard cotton but, given the similar lytic mode of action of vip3A proteins in the insect midgut, there may be similar inherent vulnerabilities to resistance evolution for these proteins if used alone. Pyramiding of the vip3A trait with a second insecticidal gene would appear to be a high priority for achieving sustainable deployment against H. armigera or similar susceptible species. [source] Sex Ratio of Some Long-Lived Dioecious Plants in a Sand Dune AreaPLANT BIOLOGY, Issue 5 2004T. J. de Jong Abstract: In dioecious plants the fraction of males among flowering plants in the field (the secondary sex ratio) is the result of the fraction of males in the seeds (the primary sex ratio) and the subsequent survival and age at first reproduction of the two genders. It has been assumed that survival and age at first reproduction are the main determinants of biased secondary sex ratio but, especially for long-lived perennials, few data are available. We address this issue for natural populations of four long-lived perennials in a dune area. In Asparagus officinale and Bryonia dioica, the secondary sex ratio was unbiased. In Salix repens the secondary sex ratio was female-biased (0.337). Hippophae rhamnoides populations were male-biased; the average sex ratio of flowering plants was 0.658, while the fraction of males varied between 0.39 near the sea to 0.84 at the inland side of the dunes. The primary sex ratio was estimated by germinating seeds and growing plants under favourable conditions with minimal mortality. In S. repens the primary sex ratio in seeds was variable among mother plants and was, on average, female-biased (0.289). This is close to the secondary sex ratio, suggesting that the female bias already originates in the seed stage. In Hippophae rhamnoides the primary sex ratio was slightly male-biased (0.564). We argue that in this species, apart from the primary sex ratio, higher mortality and a later age at first reproduction for females contribute to the strong male bias among flowering plants in the field. [source] What is plant behaviour?,PLANT CELL & ENVIRONMENT, Issue 6 2009ANTHONY TREWAVAS ABSTRACT The nature of plant behaviour is discussed, and it is concluded that it is best described as what plants do. The possibility that plant behaviour is simply signal-induced phenotypic plasticity is outlined, and some limitations of this assumption are considered. Natural environments present many challenges to growing plants, and the consequent signalling that plants perceive is becoming extremely complex. Plant behaviour is active, purposeful and intentional, and examples are discussed. Much plant behaviour, concerned with stress and herbivory, is also based on an assessment of the future likelihood of further damaging episodes and is therefore predictive. Plant behaviour involves the acquisition and processing of information. Informational terminology provides a suitable way of incorporating the concepts of learning, memory and intelligence into plant behaviour, capabilities that plants are rarely credited with. Finally, trade-offs, cost,benefit assessments and decision making are common plant behavioural attributes. It is suggested that intelligent assessments that involve the whole plant are essential to optimize these adaptive capabilities. [source] Intercellular adhesion and cell separation in plantsPLANT CELL & ENVIRONMENT, Issue 7 2003M. C. JARVIS ABSTRACT Adhesion between plant cells is a fundamental feature of plant growth and development, and an essential part of the strategy by which growing plants achieve mechanical strength. Turgor pressure provides non-woody plant tissues with mechanical rigidity and the driving force for growth, but at the same time it generates large forces tending to separate cells. These are resisted by reinforcing zones located precisely at the points of maximum stress. In dicots the reinforcing zones are occupied by networks of specific pectic polymers. The mechanisms by which these networks cohere vary and are not fully understood. In the Poaceae their place is taken by phenolic cross-linking of arabinoxylans. Whatever the reinforcing polymers, a targeting mechanism is necessary to ensure that they become immobilized at the appropriate location, and there are secretory mutants that appear to have defects in this mechanism and hence are defective in cell adhesion. At the outer surface of most plant parts, the tendency of cells to cohere is blocked, apparently by the cuticle. Mutants with lesions in the biosynthesis of cuticular lipids show aberrant surface adhesion and other developmental abnormalities. When plant cells separate, the polymer networks that join them are locally dismantled with surgical precision. This occurs during the development of intercellular spaces; during the abscission of leaves and floral organs; during the release of seeds and pollen; during differentiation of root cap cells; and during fruit ripening. Each of these cell separation processes has its own distinctive features. Cell separation can also be induced during cooking or processing of fruit and vegetables, and the degree to which it occurs is a significant quality characteristic in potatoes, pulses, tomatoes, apples and other fruit. Control over these technological characteristics will be facilitated by understanding the role of cell adhesion and separation in the life of plants. [source] Determination of agrochemical compounds in soya plants by imaging matrix-assisted laser desorption/ionisation mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 18 2005Alexander K. Mullen Detection and imaging of the herbicide mesotrione (2-(4-mesyl-2-nitrobenzoyl)cyclohexane-1,3-dione) and the fungicide azoxystrobin (methyl (E)-2-{2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl}-3-methoxyacrylate), on the surface of the soya leaf, and the detection and imaging of azoxystrobin inside the stem of the soya plant, have been achieved using matrix-assisted laser desorption/ionisation quadrupole time-of-flight mass spectrometry. In leaf analysis experiments, the two pesticides were deposited onto the surface of individual soya leaves on growing plants. The soya leaves were removed and prepared for direct and indirect (following blotting onto matrix-coated cellulose membranes) imaging analysis at different periods after initial pesticide application. In stem analysis experiments, azoxystrobin was added to the nutrient solution of a soya plant growing in a hydroponics system. The plant was left for 48,h, and then horizontal and vertical stem sections were prepared for direct imaging analysis. The images obtained demonstrate the applicability of MALDI imaging to the detection and imaging of small organic compounds in plant tissue and further extend the analytical repertoire of the versatile MALDI technique. Copyright © 2005 John Wiley & Sons, Ltd. [source] |