Group Shows (group + shows)

Distribution by Scientific Domains


Selected Abstracts


Pressure effects on inter- and intramolecular vibrations in hydrogen-bonded L -ascorbic acid crystal

JOURNAL OF RAMAN SPECTROSCOPY, Issue 1 2008
Hiroko Shimada
Abstract Pressure effects on the Raman spectra due to the inter- and intramolecular vibrations of the L -ascorbic acid crystal were studied. The intensity of the Raman bands due to the intermolecular vibrations varies in three different ways by application of pressure. The bands of the first group become stronger, those of the second one become weaker and the third group shows no prominent change in their intensity with increasing pressure. The bands due to the intermolecular vibrations show a blue shift, while the bands due to the intramolecular vibrations shift to the blue or red depending on the vibrational modes by application of pressure. The bands assigned to the OH stretching vibrations shift to the red, the bands assigned to the CO and CC stretching vibrations shift a little to the red and the bands assigned to the other vibrations shift to the blue under high pressure. The following conclusions were derived. (1) The hydrogen bonds forming helixes become stronger and the isolated hydrogen bond becomes weaker with increasing pressure. (2) The bands of the first group owing to the intermolecular vibrations are ascribed to the vibrations related to the helix hydrogen bonds and the second group bands to the isolated hydrogen bond. (3) The CO stretching vibration couples with the CC stretching vibration. (4) The phase transitions take place at 1.8 and 4 GPa in the crystal. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Origin of a late Eocene to pre-Miocene buried crater and breccia lens at Fohn-1, North Bonaparte Basin, Timor Sea: A probable extraterrestrial connection

METEORITICS & PLANETARY SCIENCE, Issue 2 2000
John d. Gorter
The crater displays the classic elements of impact structures, including a central uplift, ring syncline, and upraised rims. The presence in the breccia of redeposited Campanian and Maastrichtian microfossils suggests rebound of strata from levels deeper than 1250 m below the pre-Miocene unconformity. Morphometric modelling suggests an original crater at least 1400 m deep, which is consistent with the excavation of Cretaceous strata. Stratigraphic and palaeontological evidence suggests that the impact occurred between 36 and 24.6 Ma. The breccia contains a pseudotachylite component enriched in the inert Pt group elements (PGE) (Ir, Ru) by factors of 5,12 above the values of common sediments. The more mobile PGE (Os, Pt, Pd) show a wide scatter and terrestrial-type values. Opposite geochemical/stratigraphic trends pertain to different PGE species,the relatively inert Ir-Ru group shows an overall concentration at the base of the section, whereas the more mobile Os shows peaks at median levels of the section,suggesting upward diagenetic leaching. The near-chondritic PGE patterns at the base of the breccia pile are accompanied by near-chondritic Ni/Cr, Co/Cr, Ni/Ir, Ni/Pt, and Cu/Pd ratios. Departure from these values related to alteration at higher levels in the breccia pile is accompanied with high S levels (,1%). [source]


Structures in the fundamental plane of early-type galaxies

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2010
D. Fraix-Burnet
ABSTRACT The fundamental plane of early-type galaxies is a rather tight three-parameter correlation discovered more than 20 yr ago. It has resisted both a global and precise physical interpretation despite a consequent number of works, observational, theoretical or using numerical simulations. It appears that its precise properties depend on the population of galaxies in study. Instead of selecting a priori these populations, we propose to objectively construct homologous populations from multivariate analyses. We have undertaken multivariate cluster and cladistic analyses of a sample of 56 low-redshift galaxy clusters containing 699 early-type galaxies, using four parameters: effective radius, velocity dispersion, surface brightness averaged over effective radius and Mg2 index. All our analyses are consistent with seven groups that define separate regions on the global fundamental plane, not across its thickness. In fact, each group shows its own fundamental plane, which is more loosely defined for less diversified groups. We conclude that the global fundamental plane is not a bent surface, but made of a collection of several groups characterizing several fundamental planes with different thicknesses and orientations in the parameter space. Our diversification scenario probably indicates that the level of diversity is linked to the number and the nature of transforming events and that the fundamental plane is the result of several transforming events. We also show that our classification, not the fundamental planes, is universal within our redshift range (0.007,0.053). We find that the three groups with the thinnest fundamental planes presumably formed through dissipative (wet) mergers. In one of them, this(ese) merger(s) must have been quite ancient because of the relatively low metallicity of its galaxies, Two of these groups have subsequently undergone dry mergers to increase their masses. In the k-space, the third one clearly occupies the region where bulges (of lenticular or spiral galaxies) lie and might also have formed through minor mergers and accretions. The two least diversified groups probably did not form by major mergers and must have been strongly affected by interactions, some of the gas in the objects of one of these groups having possibly been swept out. The interpretation, based on specific assembly histories of galaxies of our seven groups, shows that they are truly homologous. They were obtained directly from several observables, thus independently of any a priori classification. The diversification scenario relating these groups does not depend on models or numerical simulations, but is objectively provided by the cladistic analysis. Consequently, our classification is more easily compared to models and numerical simulations, and our work can be readily repeated with additional observables. [source]


7-Methoxy-2,3-dioxo-1,4-dihydroquinoxalin-6-aminium chloride monohydrate

ACTA CRYSTALLOGRAPHICA SECTION C, Issue 1 2010
Jürgen Brüning
Single crystals of the title compound, C9H10N3O3+·Cl,·H2O, were obtained by recrystallization from hydrochloric acid. The cations stack along the crystallographic a direction. The 2,3-dioxo-1,4-dihydroquinoxaline group shows a significant deviation from planarity [r.m.s. deviation from the best plane = 0.063,(2),Å]. Hydrogen bonding links the cations, chloride anions and water molecules to form an extended three-dimensional architecture. [source]