Group Richness (group + richness)

Distribution by Scientific Domains

Kinds of Group Richness

  • functional group richness


  • Selected Abstracts


    Mechanisms linking plant species richness to foraging of a large herbivore

    JOURNAL OF APPLIED ECOLOGY, Issue 4 2010
    Ling Wang
    Summary 1.,There is general concern that local loss of plant diversity will adversely impact net primary productivity and other ecosystem properties. However, mechanisms linking plant diversity with other trophic levels, especially for large herbivores, are poorly understood. 2.,We examine the responses of foraging sheep to changes in plant species richness in an indoor cafeteria experiment involving six plant species richness levels (1, 2, 4, 6, 8 and 11 species) and three plant functional group compositions within each level, and in a field experiment involving three plant species richness levels (1, 4,6 or >8 species). 3.,Sheep preferred a diverse diet over a single diet even when palatable species were in the diet. Voluntary daily intake steadily rose with increases in plant species richness in both cafeteria and field experiments. The overall nutrient intake (i.e. daily energy and protein intakes) of sheep in the cafeteria also rose significantly with increased plant species richness until it reached a plateau at eight species. The quality of the diet selected by sheep was also significantly affected by plant species richness, but the variation of dietary quality was small and variable. 4.,High nutrient acquisition by the sheep depended on selecting those palatable species with high nutrient content from the plant forage on offer together with the complementary effects of plant species richness, especially for plant functional group richness. 5.,Synthesis and applications. Our experiments demonstrate an asymptotic relationship between plant species richness and voluntary intake by sheep. Increases in plant species richness from a low level led to increased daily nutrient intake, and presumably performance of the sheep. Natural grasslands are generally low in nutritional quality and so plant species richness will critically influence herbivore food intake and nutrition. The asymptotic relationship indicates that the maintenance of plant species richness in rangelands will benefit both domestic herbivore production and the conservation of biodiversity. [source]


    The DEEP2 galaxy redshift survey: the evolution of the blue fraction in groups and the field

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007
    Brian F. Gerke
    ABSTRACT We explore the behaviour of the blue galaxy fraction over the redshift range 0.75 ,z, 1.3 in the DEEP2 Survey, both for field galaxies and for galaxies in groups. The primary aim is to determine the role that groups play in driving the evolution of galaxy colour at high z. In pursuing this aim, it is essential to define a galaxy sample that does not suffer from redshift-dependent selection effects in colour,magnitude space. We develop four such samples for this study: at all redshifts considered, each one is complete in colour,magnitude space, and the selection also accounts for evolution in the galaxy luminosity function. These samples will also be useful for future evolutionary studies in DEEP2. The colour segregation observed between local group and field samples is already in place at z, 1: DEEP2 groups have a significantly lower blue fraction than the field. At fixed z, there is also a correlation between blue fraction and galaxy magnitude, such that brighter galaxies are more likely to be red, both in groups and in the field. In addition, there is a negative correlation between blue fraction and group richness. In terms of evolution, the blue fraction in groups and the field remains roughly constant from z= 0.75 to 1, but beyond this redshift the blue fraction in groups rises rapidly with z, and the group and field blue fractions become indistinguishable at z, 1.3. Careful tests indicate that this effect does not arise from known systematic or selection effects. To further ensure the robustness of this result, we build on previous mock DEEP2 catalogues to develop mock catalogues that reproduce the colour,overdensity relation observed in DEEP2 and use these to test our methods. The convergence between the group and field blue fractions at z, 1.3 implies that DEEP2 galaxy groups only became efficient at quenching star formation at z, 2; this result is broadly consistent with other recent observations and with current models of galaxy evolution and hierarchical structure growth. [source]


    An experimental test of the effect of plant functional group diversity on arthropod diversity

    OIKOS, Issue 2 2000
    Amy J. Symstad
    Characteristics used to categorize plant species into functional groups for their effects on ecosystem functioning may also be relevant to higher trophic levels. In addition, plant and consumer diversity should be positively related because more diverse plant communities offer a greater variety of resources for the consumers. Thus, the functional group composition and richness of a plant community may affect the composition and diversity of the herbivores and even higher trophic levels associated with that community. We tested this hypothesis by sampling arthropods with a vacuum sampler (34,531 individuals of 494 species) from an experiment in which we manipulated plant functional group richness and composition. Plant manipulations included all combinations of three functional groups (forbs, C3 graminoids, and C4 graminoids) removed zero, one, or two at a time from grassland plots at Cedar Creek Natural History Area, MN. Although total arthropod species richness was unrelated to plant functional group richness or composition, the species richness of some arthropod orders was affected by plant functional group composition. Two plant characteristics explained most of the effects of plant functional groups on arthropod species richness. Nutritional quality, a characteristic related to ecosystem functioning, and taxonomic diversity, a characteristic not used to designate plant functional groups, seemed to affect arthropod species richness both directly and indirectly. Thus, plant functional groups designated for their effects on ecosystem processes will only be partially relevant to consumer diversity and abundance. [source]


    Stability of ecosystem properties in response to above-ground functional group richness and composition

    OIKOS, Issue 1 2000
    David A. Wardle
    While there has been a rapidly increasing research effort focused on understanding whether and how composition and richness of species and functional groups may determine ecosystem properties, much remains unknown about how these community attributes affect the dynamic properties of ecosystems. We conducted an experiment in 540 mini-ecosystems in glasshouse conditions, using an experimental design previously shown to be appropriate for testing for functional group richness and composition effects in ecosystems. Artificial communities representing 12 different above-ground community structures were assembled. These included treatments consisting of monoculture and two- and four-species mixtures from a pool of four plant species; each plant species represented a different functional group. Additional treatments included two herbivore species, either singly or in mixture, and with or without top predators. These experimental units were then either subjected to an experimentally imposed disturbance (drought) for 40 d or left undisturbed. Community composition and drought both had important effects on plant productivity and biomass, and on several below-ground chemical and biological properties, including those linked to the functioning of the decomposer subsystem. Many of these compositional effects were due to effects both of plant and of herbivore species. Plant functional group richness also exerted positive effects on plant biomass and productivity, but not on any of the below-ground properties. Above-ground composition also had important effects on the response of below-ground properties to drought and thus influenced ecosystem stability (resistance); effects of composition on drought resistance of above-ground plant response variables and soil chemical properties were weaker and less consistent. Despite the positive effects of plant functional group richness on some ecosystem properties, there was no effect of richness on the resistance of any of the ecosystem properties we considered. Although herbivores had detectable effects on the resistance of some ecosystem properties, there were no effects of the mixed herbivore species treatment on resistance relative to the single species herbivore treatments. Increasing above-ground food chain length from zero to three trophic levels did not have any consistent effect on the stability of ecosystem properties. There was no evidence of either above-ground composition or functional group richness affecting the recovery rate of ecosystem properties from drought and hence ecosystem resilience. Our data collectively point to the role of composition (identity of functional group), but not functional group richness, in determining the stability (resistance to disturbance) of ecosystem properties, and indicates that the nature of the above-ground community can be an important determinant of the consistency of delivery of ecosystem services. [source]