Home About us Contact | |||
Groundwater Flow (groundwater + flow)
Terms modified by Groundwater Flow Selected AbstractsQuantitative Analysis of Groundwater Flow near a Partially Penetrating River under Riverside PumpingACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2004WANG Bingchen Abstract, According to practical geological and hydrogeological conditions of riverside water-supply well fields in northwestern China, an ideal hydrogeological model has been generalized and a three-dimensional mathematical model has been set up. A finite difference method was applied to simulating groundwater flow near a partially penetrating river under riverside pumping, and to analyzing the effects of river width, partial penetration and permeability of riverbed sediments on groundwater recharges. Results show that riverside pumping may cause groundwater to flow beneath the partially penetrating river, and that river width, penetration and riverbed permeability obviously influence flows from the partially penetrating river and constant-head boundaries. However, the pumping output is mainly from the partially penetrating river. [source] Meltwater discharge through the subglacial bed and its land-forming consequences from numerical experiments in the Polish lowland during the last glaciationEARTH SURFACE PROCESSES AND LANDFORMS, Issue 4 2009Jan A. Piotrowski Abstract Numerical experiments suggest that the last glaciation severely affected the upper lithosphere groundwater system in NW Poland: primarily its flow pattern, velocities and fluxes. We have simulated subglacial groundwater flow in two and three spatial dimensions using finite difference codes for steady-state and transient conditions. The results show how profoundly the ice sheet modifies groundwater pressure heads beneath and some distance beyond the ice margin. All model runs show water discharge at the ice forefield driven by ice-sheet-thickness-modulated, down-ice-decreasing hydraulic heads. In relation to non-glacial times, the transient 3D model shows significant changes in the groundwater flow directions in a regionally extensive aquifer ca. 90 m below the ice,bed interface and up to 40 km in front of the glacier. Comparison with empirical data suggests that, depending on the model run, only between 5 and 24% of the meltwater formed at the ice sole drained through the bed as groundwater. This is consistent with field observations documenting abundant occurrence of tunnel valleys, indicating that the remaining portion of basal meltwater was evacuated through a channelized subglacial drainage system. Groundwater flow simulation suggests that in areas of very low hydraulic conductivity and adverse subglacial slopes water ponding at the ice sole was likely. In these areas the relief shows distinct palaeo-ice lobes, indicating fast ice flow, possibly triggered by the undrained water at the ice,bed interface. Owing to the abundance of low-permeability strata in the bed, the simulated groundwater flow depth is less than ca. 200 m. Copyright © 2009 John Wiley & Sons, Ltd. [source] Natural-gradient tracer experiments in epikarst: a test study in the Acqua dei Faggi experimental site, southern ItalyGEOFLUIDS (ELECTRONIC), Issue 3 2008E. PETRELLA Abstract Two natural-gradient tracer experiments were carried out using borehole fluorometers in order to characterize the internal structure of epikarstic horizons and analyze subsurface flow within these high-conductivity layers. The experiments were carried out in a test site in southern Italy where the epikarst is made up of an upper part with pervasive karstification and a lower part without pervasive karstification. Injection and observation boreholes were 6.9 m apart. An initial experiment demonstrated that wider (conduits) and narrower (fractures and bedding planes) openings coexist in a well-connected network within the lower epikarst. The adjusted aperture of the opening network (105 ,m) suggests that conduits are subordinately developed. The lower epikarstic horizon is hydraulically similar to granular porous media and Darcy's law can be applied to describe groundwater flow. A small value of longitudinal dispersivity (0.13 m) shows that variations in the velocity field in the direction of flow are less significant than those typical of carbonate systems at the same experiment scale. A second experiment demonstrated that longitudinal dispersivity (2.42 m) in the upper epikarst is in agreement with findings in other carbonates at the same experiment scale. However, despite the higher dispersivity and more pervasive karstification, the mean tracer velocity (3.7 m day,1) in the upper epikarst is slightly lower than the velocity in the lower epikarst (13.6 m day,1). [source] Hydrologic and geochemical controls on soluble benzene migration in sedimentary basinsGEOFLUIDS (ELECTRONIC), Issue 2 2005Y. ZHANG Abstract The effects of groundwater flow and biodegradation on the long-distance migration of petroleum-derived benzene in oil-bearing sedimentary basins are evaluated. Using an idealized basin representation, a coupled groundwater flow and heat transfer model computes the hydraulic head, stream function, and temperature in the basin. A coupled mass transport model simulates water washing of benzene from an oil reservoir and its miscible, advective/dispersive transport by groundwater. Benzene mass transfer at the oil,water contact is computed assuming equilibrium partitioning. A first-order rate constant is used to represent aqueous benzene biodegradation. A sensitivity study is used to evaluate the effect of the variation in aquifer/geochemical parameters and oil reservoir location on benzene transport. Our results indicate that in a basin with active hydrodynamics, miscible benzene transport is dominated by advection. Diffusion may dominate within the cap rock when its permeability is less than 10,19 m2. Miscible benzene transport can form surface anomalies, sometimes adjacent to oil fields. Biodegradation controls the distance of transport down-gradient from a reservoir. We conclude that benzene detected in exploration wells may indicate an oil reservoir that lies hydraulically up-gradient. Geochemical sampling of hydrocarbons from springs and exploration wells can be useful only when the oil reservoir is located within about 20 km. Benzene soil gas anomalies may form due to regional hydrodynamics rather than separate phase migration. Diffusion alone cannot explain the elevated benzene concentration observed in carrier beds several km away from oil fields. [source] Evaluation of soluble benzene migration in the Uinta BasinGEOFLUIDS (ELECTRONIC), Issue 2 2005Y. ZHANG Abstract Field sampling and mathematical modeling are used to study the long-distance transport and attenuation of petroleum-derived benzene in the Uinta Basin, Utah. Benzene concentration was measured from oil and oil field formation waters of the Altamont-Bluebell and Pariette Bench oil fields in the basin. It was also measured from springs located in the regional groundwater discharge areas, hydraulically down-gradient from the oil fields sampled. The average benzene concentration in oils and co-produced waters is 1946 and 4.9 ppm at the Altamont-Bluebell field and 1533 and 0.6 ppm at the Pariette Bench field, respectively. Benzene concentration is below the detection limit in all springs sampled. Mathematical models are constructed along a north,south trending transect across the basin through both fields. The models represent groundwater flow, heat transfer and advective/dispersive benzene transport in the basin, as well as benzene diffusion within the oil reservoirs. The coupled groundwater flow and heat transfer model is calibrated using available thermal and hydrologic data. We were able to reproduce the observed excess fluid pressure within the lower Green River Formation and the observed convective temperature anomalies across the northern basin. Using the computed best-fit flow and temperature, the coupled transport model simulates water washing of benzene from the oil reservoirs. Without the effect of benzene attenuation, dissolved benzene reaches the regional groundwater discharge areas in measurable concentration (>0.01 ppm); with attenuation, benzene concentration diminishes to below the detection limit within 1,4 km from the reservoirs. Attenuation also controls the amount of water washing over time. In general, models that represent benzene attenuation in the basin produce results more consistent with field observations. [source] Interpretation of observed fluid potential patterns in a deep sedimentary basin under tectonic compression: Hungarian Great Plain, Pannonian BasinGEOFLUIDS (ELECTRONIC), Issue 1 2001J. Tóth Abstract The , 40 000 km2 Hungarian Great Plain portion of the Pannonian Basin consists of a basin fill of 100 m to more than 7000 m thick semi- to unconsolidated marine, deltaic, lacustrine and fluviatile clastic sediments of Neogene age, resting on a strongly tectonized Pre-Neogene basement of horst-and-graben topography of a relief in excess of 5000 m. The basement is built of a great variety of brittle rocks, including flysch, carbonates and metamorphics. The relatively continuous Endr,d Aquitard, with a permeability of less than 1 md (10,15 m2) and a depth varying between 500 and 5000 m, divides the basin's rock framework into upper and lower sequences of highly permeable rock units, whose permeabilities range from a few tens to several thousands of millidarcy. Subsurface fluid potential and flow fields were inferred from 16 192 water level and pore pressure measurements using three methods of representation: pressure,elevation profiles; hydraulic head maps; and hydraulic cross-sections. Pressure,elevation profiles were constructed for eight areas. Typically, they start from the surface with a straight-line segment of a hydrostatic gradient (,st = 9.8067 MPa km,1) and extend to depths of 1400,2500 m. At high surface elevations, the gradient is slightly smaller than hydrostatic, while at low elevations it is slightly greater. At greater depths, both the pressures and their vertical gradients are uniformly superhydrostatic. The transition to the overpressured depths may be gradual, with a gradient of ,dyn = 10,15 MPa km,1 over a vertical distance of 400,1000 m, or abrupt, with a pressure jump of up to 10 MPa km,1 over less than 100 m and a gradient of ,dyn > 20 MPa km,1. According to the hydraulic head maps for 13 100,500 m thick horizontal slices of the rock framework, the fluid potential in the near-surface domains declines with depth beneath positive topographic features, but it increases beneath depressions. The approximate boundary between these hydraulically contrasting regions is the 100 m elevation contour line in the Duna,Tisza interfluve, and the 100,110 m contours in the Nyírség uplands. Below depths of ,,600 m, islets of superhydrostatic heads develop which grow in number, areal extent and height as the depth increases; hydraulic heads may exceed 3000 m locally. A hydraulic head ,escarpment' appears gradually in the elevation range of ,,1000 to ,,2800 m along an arcuate line which tracks a major regional fault zone striking NE,SW: heads drop stepwise by several hundred metres, at places 2000 m, from its north and west sides to the south and east. The escarpment forms a ,fluid potential bank' between a ,fluid potential highland' (500,2500 m) to the north and west, and a ,fluid potential basin' (100,500 m) to the south and east. A ,potential island' rises 1000 m high above this basin further south. According to four vertical hydraulic sections, groundwater flow is controlled by the topography in the upper 200,1700 m of the basin; the driving force is orientated downwards beneath the highlands and upwards beneath the lowlands. However, it is directed uniformly upwards at greater depths. The transition between the two regimes may be gradual or abrupt, as indicated by wide or dense spacing of the hydraulic head contours, respectively. Pressure ,plumes' or ,ridges' may protrude to shallow depths along faults originating in the basement. The basement horsts appear to be overpressured relative to the intervening grabens. The principal thesis of this paper is that the two main driving forces of fluid flow in the basin are gravitation, due to elevation differences of the topographic relief, and tectonic compression. The flow field is unconfined in the gravitational regime, whereas it is confined in the compressional regime. The nature and geometry of the fluid potential field between the two regimes are controlled by the sedimentary and structural features of the rock units in that domain, characterized by highly permeable and localized sedimentary windows, conductive faults and fracture zones. The transition between the two potential fields can be gradual or abrupt in the vertical, and island-like or ridge-like in plan view. The depth of the boundary zone can vary between 400 and 2000 m. Recharge to the gravitational regime is inferred to occur from infiltrating precipitation water, whereas that to the confined regime is from pore volume reduction due to the basement's tectonic compression. [source] Detection of preferential infiltration pathways in sinkholes using joint inversion of self-potential and EM-34 conductivity dataGEOPHYSICAL PROSPECTING, Issue 5 2007A. Jardani ABSTRACT The percolation of water in the ground is responsible for measurable electric potentials called self-potentials. These potentials are influenced by the distribution of the electrical conductivity of the ground. Because sinkholes are associated both with self-potential and electrical conductivity anomalies, a joint inversion of EM-34 conductivity and self-potential data is proposed as a way of delineating the location of these features. Self-potential and EM conductivity data were obtained at a test site in Normandy (France) where sinkholes and crypto-sinkholes are present over a karstic area in a chalk substratum overlain by clay-with-flint and loess covers. The presence of sinkholes and crypto-sinkholes is associated with negative self-potential anomalies with respect to a reference electrode located outside the area where the sinkholes are clustered. The sinkholes also have a conductivity signature identified by the EM-34 conductivity data. We used the simulated-annealing method, which is a global optimization technique, to invert jointly EM-34 conductivity and self-potential data. Self-potential and electrical conductivity provide clear complementary information to determine the interface between the loess and clay-with-flint formations. The sinkholes and crypto-sinkholes are marked by depressions in this interface, focusing the groundwater flow towards the aquifer contained in the chalk substratum. [source] Simulating Seepage into Mine Shafts and Tunnels with MODFLOWGROUND WATER, Issue 3 2010Jacob Zaidel In cases when an equivalent porous medium assumption is suitable for simulating groundwater flow in bedrock aquifers, estimation of seepage into underground mine workings (UMWs) can be achieved by specifying MODFLOW drain nodes at the contact between water bearing rock and dewatered mine openings. However, this approach results in significant numerical problems when applied to simulate seepage into an extensive network of UMWs, which often exist at the mine sites. Numerical simulations conducted for individual UMWs, such as a vertical shaft or a horizontal drift, showed that accurate prediction of seepage rates can be achieved by either applying grid spacing that is much finer than the diameter/width of the simulated openings (explicit modeling) or using coarser grid with cell sizes exceeding the characteristic width of shafts or drifts by a factor of 3. Theoretical insight into this phenomenon is presented, based on the so-called well-index theory. It is demonstrated that applying this theory allows to minimize numerical errors associated with MODFLOW simulation of seepage into UMWs on a relatively coarse Cartesian grid. Presented examples include simulated steady-state groundwater flow from homogeneous, heterogeneous, and/or anisotropic rock into a vertical shaft, a horizontal drift/cross-cut, a ramp, two parallel drifts, and a combined system of a vertical shaft connected to a horizontal drift. [source] Interactions between a saline lagoon and a semi-confined aquifer on a salinized floodplain of the lower River Murray, southeastern AustraliaHYDROLOGICAL PROCESSES, Issue 24 2009E. W. Banks Abstract The transport of saline groundwater from local and regional aquifers to the lower River Murray in South Australia is thought to be greatly influenced by the incised lagoons and wetlands that are present in the adjacent floodplain. Interactions between a saline lagoon and semi-confined aquifer at a floodplain on the River Murray were studied over a 1-year period using hydrogeological techniques and environmental tracers (Cl,, ,2H and ,18O). Piezometric surface monitoring showed that the lagoon acted as a flow-through system intercepting local and regional groundwater flow. A chloride mass balance determined that approximately 70% of the lagoon winter volume was lost by evaporation. A stable isotope mass balance estimated leakage from the lagoon to the underlying aquifer. Around 0,38% of the total groundwater inflow into the lagoon was lost to leakage compared to 62,100% of groundwater inflow lost to evaporation. Overall, floodplain wetlands of the type studied here behave as groundwater flow-through systems. They intercept groundwater discharge, concentrate it and eventually recharge more saline water to the floodplain aquifer. Understanding groundwater,surface water interactions in floodplain wetlands will benefit the effective management of salinity in semi-arid rivers. Copyright © 2009 John Wiley & Sons, Ltd. [source] The integration of thermal infrared imaging, discharge measurements and numerical simulation to quantify the relative contributions of freshwater inflows to small estuaries in Atlantic CanadaHYDROLOGICAL PROCESSES, Issue 20 2009Serban Danielescu Abstract Nutrient fluxes from developed catchments are often a significant factor in the declining water quality and ecological functioning in estuaries. Determining the relative contributions of surface water and groundwater discharge to nutrient-sensitive estuaries is required because these two pathways may be characterized by different nutrient concentrations and temporal variability, and may thus require different remedial actions. Quantifying the volumetric discharge of groundwater, which may occur via diffuse seepage or springs, remains a significant challenge. In this contribution, the total discharge of freshwater, including groundwater, to two small nutrient-sensitive estuaries in Prince Edward Island (Canada) is assessed using a unique combination of airborne thermal infrared imaging, direct discharge measurements in streams and shoreline springs, and numerical simulation of groundwater flow. The results of the thermal infrared surveys indicate that groundwater discharge occurs at discrete locations (springs) along the shoreline of both estuaries, which can be attributed to the fractured sandstone bedrock aquifer. The discharge measured at a sub-set of the springs correlates well with the area of the thermal signal attributed to each discharge location and this information was used to determine the total spring discharge to each estuary. Stream discharge is shown to be the largest volumetric contribution of freshwater to both estuaries (83% for Trout River estuary and 78% for McIntyre Creek estuary); however, groundwater discharge is significant at between 13% and 18% of the total discharge. Comparison of the results from catchment-scale groundwater flow models and the analysis of spring discharge suggest that diffuse seepage to both estuaries comprises only about 25% of the total groundwater discharge. The methods employed in this research provide a useful framework for determining the relative volumetric contributions of surface water and groundwater to small estuaries and the findings are expected to be relevant to other fractured sandstone coastal catchments in Atlantic Canada. Copyright © 2009 John Wiley & Sons, Ltd. [source] Subglacial modulation of the hydrograph from glacierized basinsHYDROLOGICAL PROCESSES, Issue 19 2008Gwenn E. Flowers Abstract The extent of basin glacierization has important implications for the hydrograph in part, because snow, firn and ice impart different delays in water transport through the system. Here, the significance of subglacial drainage morphology in modulating the hydrograph is examined with a one-dimensional physically based model. The conceptual model of subglacial drainage comprises both ,fast' and ,slow' elements, respectively associated with summer and winter drainage regimes. The additional possibility of a permeable glacier substrate is taken into account by allowing water transport in a subglacial aquifer. Forced by prescribed rates of melt-water delivery to the glacier bed, the model predicts glacier discharge by drainage system provenance. The effects of (1) ,hard' versus ,soft' glacier beds, (2) subsurface permeability and groundwater flow, and (3) glacier geometry are then investigated. Hydrograph character, in the form of peak timing and amplitude, symmetry with respect to the forcing, and the amplitude of diurnal fluctuations, is affected by the partitioning of water through the various flow elements. Hard beds and impermeable substrates maximize the discharge routed through the fast-drainage system in the simulations, generally resulting in higher seasonal discharge maxima and stronger diurnal variations in discharge. High hydraulic transmissivities, either at the glacier bed or in underlying strata, hinder the development of the fast-drainage system in the simulations, producing hydrographs of lower amplitude. Glacier geometry has a modest effect, with adverse bed slopes, very thick or very thin ice and short glacier lengths favouring prolonged drainage through the slow system. These results suggest that the morphology and evolution of the subglacial drainage system may play a significant role in determining the character of the hydrograph from glacierized basins. Copyright © 2008 John Wiley & Sons, Ltd. [source] Understanding hydrological processes with scarce data in a mountain environmentHYDROLOGICAL PROCESSES, Issue 12 2008A. Chaponničre Abstract Performance of process-based hydrological models is usually assessed through comparison between simulated and measured streamflow. Although necessary, this analysis is not sufficient to estimate the quality and realism of the modelling since streamflow integrates all processes of the water cycle, including intermediate production or redistribution processes such as snowmelt or groundwater flow. Assessing the performance of hydrological models in simulating accurately intermediate processes is often difficult and requires heavy experimental investments. In this study, conceptual hydrological modelling (using SWAT) of a semi-arid mountainous watershed in the High Atlas in Morocco is attempted. Our objective is to analyse whether good intermediate processes simulation is reached when global-satisfying streamflow simulation is possible. First, parameters presenting intercorrelation issues are identified: from the soil, the groundwater and, to a lesser extent, from the snow. Second, methodologies are developed to retrieve information from accessible intermediate hydrological processes. A geochemical method is used to quantify the contribution of a superficial and a deep reservoir to streamflow. It is shown that, for this specific process, the model formalism is not adapted to our study area and thus leads to poor simulation results. A remote-sensing methodology is proposed to retrieve the snow surfaces. Comparison with the simulation shows that this process can be satisfyingly simulated by the model. The multidisciplinary approach adopted in this study, although supported by the hydrological community, is still uncommon. Copyright © 2007 John Wiley & Sons, Ltd. [source] Water table fluctuations under three riparian land covers, Iowa (USA)HYDROLOGICAL PROCESSES, Issue 18 2007Keith E. Schilling Abstract Water table depth is known to play an important role in nitrogen cycling in riparian zones, but little detailed monitoring of water table fluctuations has been reported. In this study, results of high-resolution water table monitoring under three common riparian land covers (forest, cool season grass, corn) were analysed to gain a better understanding of the relation of vegetation cover to water table depth. Three riparian wells located at the Neal Smith National Wildlife Refuge in Jasper County, Iowa, were instrumented with data loggers to record hourly water table behaviour from July to December 2004. Water table depth under the forest showed a diurnal pattern of rising and falling water levels, whereas the grass and corn exhibited a stepped pattern of greater drawdown during the day and less drainage at night. Clear daytime and night-time water table signals were related to daily plant water demands and lateral groundwater flow. Using two estimates of specific yield, hourly and daily ET rates were estimated to be higher under the forest cover than the grass and corn, with peak ET rates in July ranging from 5·02 to 6·32 mm day,1 for forest and from 1·81 to 4·13 mm day,1 for corn and grass. Following plant senescence in October, water table declines were associated with lateral flow to Walnut Creek. The results from this study suggest that consideration should be given to monitoring water table behaviour more frequently to capture daily and seasonal patterns related to riparian vegetation type. Copyright © 2007 John Wiley & Sons, Ltd. [source] Modelling hydrological management for the restoration of acidified floating fensHYDROLOGICAL PROCESSES, Issue 20 2005Stefan C. Dekker Abstract Wetlands show a large decline in biodiversity. To protect and restore this biodiversity, many restoration projects are carried out. Hydrology in wetlands controls the chemical and biological processes and may be the most important factor regulating wetland function and development. Hydrological models may be used to simulate these processes and to evaluate management scenarios for restoration. HYDRUS2D, a combined saturated,unsaturated groundwater flow and transport model, is presented. This simulates near-surface hydrological processes in an acidified floating fen, with the aim to evaluate the effect of hydrological restoration in terms of conditions for biodiversity. In the acidified floating fen in the nature reserve Ilperveld (The Netherlands), a trench system was dug for the purpose of creating a runoff channel for acid rainwater in wet periods and to enable circum-neutral surface water to enter the fen in dry periods. The model is calibrated against measured conductivity values for a 5 year period. From the model simulations, it was found that lateral flow in the floating raft is limited. Furthermore, the model shows that the best management option is a combination of trenches and inundation, which gave the best soil water quality in the root zone. It is concluded that hydrological models can be used for the calculation of management scenarios in restoration projects. The combined saturated,unsaturated model concept used in this paper is able to incorporate the governing hydrological processes in the wetland root zones. Copyright © 2005 John Wiley & Sons, Ltd. [source] Retracted and replaced: A modelling study of hyporheic exchange pattern and the sequence, size, and spacing of stream bedforms in mountain stream networks, Oregon, USAHYDROLOGICAL PROCESSES, Issue 15 2005Michael N. Gooseff Abstract This article has been retracted and replaced. See Retraction and Replacement Notice DOI: 10.1002/hyp.6350 Studies of hyporheic exchange flows have identified physical features of channels that control exchange flow at the channel unit scale, namely slope breaks in the longitudinal profile of streams that generate subsurface head distributions. We recently completed a field study that suggested channel unit spacing in stream longitudinal profiles can be used to predict the spacing between zones of upwelling (flux of hyporheic water into the stream) and downwelling (flux of stream water into the hyporheic zone) in the beds of mountain streams. Here, we use two-dimensional groundwater flow and particle tracking models to simulate vertical and longitudinal hyporheic exchange along the longitudinal axis of stream flow in second-, third-, and fourth-order mountain stream reaches. Modelling allowed us to (1) represent visually the effect that the shape of the longitudinal profile has on the flow net beneath streambeds; (2) isolate channel unit sequence and spacing as individual factors controlling the depth that stream water penetrates the hyporheic zone and the length of upwelling and downwelling zones; (3) evaluate the degree to which the effects of regular patterns in bedform size and sequence are masked by irregularities in real streams. We simulated hyporheic exchange in two sets of idealized stream reaches and one set of observed stream reaches. Idealized profiles were constructed using regression equations relating channel form to basin area. The size and length of channel units (step size, pool length, etc.) increased with increasing stream order. Simulations of hyporheic exchange flows in these reaches suggested that upwelling lengths increased (from 2·7 m to 7·6 m), and downwelling lengths increased (from 2·9 m to 6·0 m) with increase in stream order from second to fourth order. Step spacing in the idealized reaches increased from 5·3 m to 13·7 m as stream size increased from second to fourth order. Simulated upwelling lengths increased from 4·3 m in second-order streams to 9·7 m in fourth-order streams with a POOL,RIFFLE,STEP channel unit sequence, and increased from 2·5 m to 6·1 m from second- to fourth-order streams with a POOL,STEP,RIFFLE channel unit sequence. Downwelling lengths also increased with stream order in these idealized channels. Our results suggest that channel unit spacing, size, and sequence are all important in determining hyporheic exchange patterns of upwelling and downwelling. Though irregularities in the size and spacing of bedforms caused flow nets to be much more complex in surveyed stream reaches than in idealized stream reaches, similar trends emerged relating the average geomorphic wavelength to the average hyporheic wavelength in both surveyed and idealized reaches. Copyright © 2005 John Wiley & Sons, Ltd. [source] Modelling two-dimensional steady-state groundwater flow and flow sensitivity to boundary conditions in blanket peat complexesHYDROLOGICAL PROCESSES, Issue 2 2005D. R. Lapen Abstract This study used a two-dimensional steady-state finite-element groundwater flow model to simulate groundwater flow in two Newfoundland blanket peat complexes and to examine flow system sensitivity to changes in water table recharge and aquifer properties. The modelling results were examined within the context of peat-forming processes in the two complexes. Modelled flow compared favourably with observed flow. The sensitivity analyses suggested that more highly decomposed bog peat along bog margins probably has/had a positive impact on net peat accumulation within bog interiors. Peat with lower hydraulic conductivity along bog margins effectively impedes lateral drainage, localizes water table drawdown to extreme bog margins, and elevates water tables along bog interiors. Peat formation and elevated water tables in adjacent poor fens/laggs currently rely on placic and ortstein horizons impeding vertical drainage and water flow inputs from adjacent bogs. Modest reductions in atmospheric recharge were found to govern bog-flow-system geometries in a way that would adversely affect paludification processes in adjacent fens/laggs. Copyright © 2004 John Wiley & Sons, Ltd. [source] Characteristics of preferential flow and groundwater discharge to Shingobee Lake, Minnesota, USAHYDROLOGICAL PROCESSES, Issue 10 2002Hans F. Kishel Abstract Small-scale heterogeneities and large changes in hydraulic gradient over short distances can create preferential groundwater flow paths that discharge to lakes. A 170 m2 grid within an area of springs and seeps along the shore of Shingobee Lake, Minnesota, was intensively instrumented to characterize groundwater-lake interaction within underlying organic-rich soil and sandy glacial sediments. Seepage meters in the lake and piezometer nests, installed at depths of 0·5 and 1·0 m below the ground surface and lakebed, were used to estimate groundwater flow. Statistical analysis of hydraulic conductivity estimated from slug tests indicated a range from 21 to 4·8 × 10,3 m day,1 and small spatial correlation. Although hydraulic gradients are overall upward and toward the lake, surface water that flows onto an area about 2 m onshore results in downward flow and localized recharge. Most flow occurred within 3 m of the shore through more permeable pathways. Seepage meter and Darcy law estimates of groundwater discharge agreed well within error limits. In the small area examined, discharge decreases irregularly with distance into the lake, indicating that sediment heterogeneity plays an important role in the distribution of groundwater discharge. Temperature gradients showed some relationship to discharge, but neither temperature profiles nor specific electrical conductance could provide a more convenient method to map groundwater,lake interaction. These results suggest that site-specific data may be needed to evaluate local water budget and to protect the water quality and quantity of discharge-dominated lakes. Copyright © 2002 John Wiley & Sons, Ltd. [source] A two-dimensional analytical solution for groundwater flow in a leaky confined aquifer system near open tidal waterHYDROLOGICAL PROCESSES, Issue 4 2001Zhonghua Tang Abstract Groundwater in coastal areas is commonly disturbed by tidal fluctuations. A two-dimensional analytical solution is derived to describe the groundwater fluctuation in a leaky confined aquifer system near open tidal water under the assumption that the groundwater head in the confined aquifer fluctuates in response to sea tide whereas that of the overlying unconfined aquifer remains constant. The analytical solution presented here is an extension of the solution by Sun for two-dimensional groundwater flow in a confined aquifer and the solution by Jiao and Tang for one-dimensional groundwater flow in a leaky confined aquifer. The analytical solution is compared with a two-dimensional finite difference solution. On the basis of the analytical solution, the groundwater head distribution in a leaky confined aquifer in response to tidal boundaries is examined and the influence of leakage on groundwater fluctuation is discussed. Copyright © 2001 John Wiley & Sons, Ltd. [source] Investigation of a modified sequential iteration approach for solving coupled reactive transport problemsINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 2 2006David J. Z. Chen Abstract When contaminants enter the soil or groundwater, they may interact physically, geochemically and biochemically with the native water, microorganisms and solid matrix. A realistic description of a reactive transport regime that includes these processes requires joint consideration of multiple chemical species. Currently there are three common numerical approaches for coupling multispecies reaction and solute transport: the one-step approach, the sequential non-iterative approach (SNIA), and the sequential iterative approach (SIA). A modification of the SNIA method is the Strang-splitting method. In this study, a new modified sequential iteration approach (MSIA) for solving multicomponent reactive transport in steady state groundwater flow is presented. This coupling approach has been applied to two realistic reactive transport problems and its performance compared with the SIA and the Strang-splitting methods. The comparison shows that MSIA consistently converges faster than the other two coupling schemes. For the simulation of nitrogen and related species transport and reaction in a riparian aquifer, the total CPU time required by MSIA is only about 38% of the total CPU time required by the SIA, and only 50% of the CPU time required by the Strang-splitting method. The test problem results indicate that the SIA has superior accuracy, while the accuracy of MSIA is marginally better than that of the Strang-splitting method. The overall performance of MSIA is considered to be good, especially for simulations in which computational time is a critical factor. Copyright © 2005 John Wiley & Sons, Ltd. [source] Adaptive moving mesh methods for simulating one-dimensional groundwater problems with sharp moving frontsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 11 2002Weizhang Huang Abstract Accurate modelling of groundwater flow and transport with sharp moving fronts often involves high computational cost, when a fixed/uniform mesh is used. In this paper, we investigate the modelling of groundwater problems using a particular adaptive mesh method called the moving mesh partial differential equation approach. With this approach, the mesh is dynamically relocated through a partial differential equation to capture the evolving sharp fronts with a relatively small number of grid points. The mesh movement and physical system modelling are realized by solving the mesh movement and physical partial differential equations alternately. The method is applied to the modelling of a range of groundwater problems, including advection dominated chemical transport and reaction, non-linear infiltration in soil, and the coupling of density dependent flow and transport. Numerical results demonstrate that sharp moving fronts can be accurately and efficiently captured by the moving mesh approach. Also addressed are important implementation strategies, e.g. the construction of the monitor function based on the interpolation error, control of mesh concentration, and two-layer mesh movement. Copyright © 2002 John Wiley & Sons, Ltd. [source] A numerical approach for groundwater flow in unsaturated porous mediaINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 9-10 2006F. Quintana Abstract In this article, a computational tool to simulate groundwater flow in variably saturated non-deformable fractured porous media is presented, which includes a conceptual model to obtain analytical expressions of water retention and hydraulic conductivity curves for fractured hard rocks and a numerical algorithm to solve the Richards equation. To calculate effective saturation and relative hydraulic conductivity curves we adopt the Brooks,Corey model assuming fractal laws for both aperture and number of fractures. A standard Galerkin formulation was employed to solve the Richards' equation together with a Crank,Nicholson scheme with Richardson extrapolation for the time discretization. The main contribution of this paper is to group an analytical model of the authors with a robust numerical algorithm designed to solve adequately the highly non-linear Richards' equation generating a tool for porous media engineering. Copyright © 2006 John Wiley & Sons, Ltd. [source] Groundwater input affecting plant distribution by controlling ammonium and iron availabilityJOURNAL OF VEGETATION SCIENCE, Issue 4 2006Esther C.H.E.T. Lucassen Abstract Question: How does groundwater input affect plant distribution in Alnus glutinosa (black alder) carrs? Location: Alder carrs along the river Meuse, SE Netherlands. Methods: Three types of site, characterized by groundwater flow, were sampled in 17 A. glutinosa carrs. Vegetation and abiotic data (soil and water chemistry) were collected and analysed using a Canonical Correspondence Analysis. Based on the results, a laboratory experiment tested the effect of groundwater input (Ca2+) on pore water chemistry (NH4+ availability). Results: Environmental factors indicating groundwater input (Ca2+ and Fe2+), correlating with the NH+4 concentration in the pore water, best explained the variation in plant distribution. NH4+ availability was determined by Ca2+ input via the groundwater and subsequent competition for exchange sites in the sediment. As a result, nutrient-poor seepage locations fully fed by groundwater were dominated by small iron resistant plants such as Caltha palustris and Equisetum fluviatile. More nutrient-rich locations, fed by a combination of groundwater and surface water, allowed the growth of taller iron resistant plant species such as Carex paniculata. Nutrient-rich locations with stagnating surface water were hardly fed by groundwater, allowing the occurrence of fast growing and less iron tolerant wetland grasses such as Glyceria fluitans and G. maxima. Conclusion: Groundwater input affects plant composition in A. glutinosa carrs along the river Meuse by determining nutrient availability (ammonium) and concentrations of toxic iron. [source] Performance assessment of hanging funnel-and-gate structures designed by reverse particle tracking for capturing polluted groundwaterREMEDIATION, Issue 3 2007Paul F. Hudak The objective of this study was to evaluate the capability of partially penetrating (hanging) funnel-and-gate structures, designed using reverse flow trajectories, for capturing plumes of contaminated groundwater. Linear capture structures, comprised of two slurry cutoff walls on either side of a permeable gate, were positioned perpendicular to regional groundwater flow in a hypothetical unconfined aquifer. A four-step approach was used for each of two simulated settings: (1) a numerical mass transport model generated a contaminant plume originating from a source area; (2) a particle-tracking model projected groundwater flow paths upstream from a treatment gate; (3) the structure was widened and deepened until bounding path lines contained the plume; and (4) mass transport simulation tested the ability of the structure to capture the plume. Results of this study suggest that designing funnel-and-gate structures using reverse particle tracking may result in too small a structure to capture a contaminant plume. This practice generally ignores effects of hydrodynamic dispersion, which may enlarge plumes such that contaminants move beneath or around a capture structure. This bypassing effect may be considerable even for low values of dispersivity. Particle-tracking approaches may also underestimate the amount of time required to reduce contaminant concentrations to acceptable levels. © 2007 Wiley Periodicals, Inc. [source] Evaluation of a vertical frozen soil barrier at oak ridge national laboratoryREMEDIATION, Issue 3 2000Stanley W. Lynn Arctic Foundations, Inc. (AFI), of Anchorage, Alaska, has developed a freeze barrier system designed to hydraulically isolate a contaminant source area. The system can be used for long-term or temporary containment of groundwater until appropriate remediation techniques can be applied. The technology was evaluated under the United States Environmental Protection Agency's (EPA's) Superfund Innovative Technology Evaluation (SITE) program at the United States Department of Energy's (DOE's) Oak Ridge National Laboratory (ORNL) facility in Oak Ridge, Tennessee. For the demonstration, an array of freeze pipes called "thermoprobes" was installed to a depth of 30 feet below ground surface around a former waste collection pond and keyed into bedrock. The system was used to establish an impermeable frozen soil barrier to hydraulically isolate the pond. Demonstration personnel collected independent data to evaluate the technology's performance. A variety of evaluation tools were used,including a groundwater dye tracing investigation, groundwater elevation measurements, and subsurface soil temperature data,to determine the effectiveness of the freeze barrier system in preventing horizontal groundwater flow beyond the limits of the frozen soil barrier. Data collected during the demonstration provided evidence that the frozen soil barrier was effective in hydraulically isolating the pond. [source] Insulating effect of coals and organic rich shales: implications for topography-driven fluid flow, heat transport, and genesis of ore deposits in the Arkoma Basin and Ozark PlateauBASIN RESEARCH, Issue 2 2002J.A. Nunn ABSTRACT Sedimentary rocks rich in organic matter, such as coal and carbonaceous shales, are characterized by remarkably low thermal conductivities in the range of 0.2,1.0 W m,1 °C,1, lower by a factor of 2 or more than other common rock types. As a result of this natural insulating effect, temperature gradients in organic rich, fine-grained sediments may become elevated even with a typical continental basal heat flow of 60 mW m,2. Underlying rocks will attain higher temperatures and higher thermal maturities than would otherwise occur. A two-dimensional finite element model of fluid flow and heat transport has been used to study the insulating effect of low thermal conductivity carbonaceous sediments in an uplifted foreland basin. Topography-driven recharge is assumed to be the major driving force for regional groundwater flow. Our model section cuts through the Arkoma Basin to Ozark Plateau and terminates near the Missouri River, west of St. Louis. Fluid inclusions, organic maturation, and fission track evidence show that large areas of upper Cambrian rocks in southern Missouri have experienced high temperatures (100,140 °C) at shallow depths (< 1.5 km). Low thermal conductivity sediments, such as coal and organic rich mudstone were deposited over the Arkoma Basin and Ozark Plateau, as well as most of the mid-continent of North America, during the Late Palaeozoic. Much of these Late Palaeozoic sediments were subsequently removed by erosion. Our model results are consistent with high temperatures (100,130 °C) in the groundwater discharge region at shallow depths (< 1.5 km) even with a typical continental basal heat flow of 60 mW m,2. Higher heat energy retention in basin sediments and underlying basement rocks prior to basin-scale fluid flow and higher rates of advective heat transport along basal aquifers owing to lower fluid viscosity (more efficient heat transport) contribute to higher temperatures in the discharge region. Thermal insulation by organic rich sediments which traps heat transported by upward fluid advection is the dominant mechanism for elevated temperatures in the discharge region. This suggests localized formation of ore deposits within a basin-scale fluid flow system may be caused by the juxtaposition of upward fluid discharge with overlying areas of insulating organic rich sediments. The additional temperature increment contributed to underlying rocks by this insulating effect may help to explain anomalous thermal maturity of the Arkoma Basin and Ozark Plateau, reducing the need to call upon excessive burial or high basal heat flow (80,100 mW m,2) in the past. After subsequent uplift and erosion remove the insulating carbonaceous layer, the model slowly returns to a normal geothermal gradient of about 30 °C km,1. [source] Quantitative Analysis of Groundwater Flow near a Partially Penetrating River under Riverside PumpingACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2004WANG Bingchen Abstract, According to practical geological and hydrogeological conditions of riverside water-supply well fields in northwestern China, an ideal hydrogeological model has been generalized and a three-dimensional mathematical model has been set up. A finite difference method was applied to simulating groundwater flow near a partially penetrating river under riverside pumping, and to analyzing the effects of river width, partial penetration and permeability of riverbed sediments on groundwater recharges. Results show that riverside pumping may cause groundwater to flow beneath the partially penetrating river, and that river width, penetration and riverbed permeability obviously influence flows from the partially penetrating river and constant-head boundaries. However, the pumping output is mainly from the partially penetrating river. [source] Colloid-associated contaminant transport in porous media: 2.AICHE JOURNAL, Issue 10 2002Mathematical modeling A comprehensive mathematical model developed describes the colloid-associated contaminant transport in groundwater flows based on equilibrium adsorption of contaminants, hydrodynamic release, migration, and capture of colloidal fines in groundwater flows. This model is more realistic than the existing models in that the physics of migration of colloidal fines is adequately incorporated. It also accounts for the entrapment and plugging of fine particles and, therefore, predicts both facilitation and retardation of the transport of contaminants depending on the flow and other conditions. The conditions leading to inhibition/retardation of contaminant transport due to plugging are: high release coefficient, low initial porosity, high inlet fines concentration, and high initial permeability. The mobilization and migration of colloidal fines, kaolin and their role on plugging, as well as on Ni2+ contaminant transport through kaolin-sand packed beds, were studied, and the model was tested with published experimental measurements, as well as with our laboratory column results. The plugging-based retardation of contaminant transport can be used to develop a new containment technique. [source] |