Green Emission (green + emission)

Distribution by Scientific Domains

Terms modified by Green Emission

  • green emission band

  • Selected Abstracts


    Polyfluorene Light-Emitting Diodes: Understanding the Nature of the States Responsible for the Green Emission in Oxidized Poly(9,9-dialkylfluorene)s: Photophysics and Structural Studies of Linear Dialkylfluorene/Fluorenone Model Compounds (Adv. Funct.

    ADVANCED FUNCTIONAL MATERIALS, Issue 13 2009
    Mater.
    Polyfluorenes, whilst attractive candidates for polymer light-emitting diodes, are susceptible to oxidative degradation. This degradation results in significant green emission. Although it has been linked to the formation of fluorenones, the precise relationship between fluorenones and the observed color shift remains widely debated. On page 2147, Chan et al. report a study on this relationship with the use of a series of model compounds. Inter-molecular fluorenone,fluorenone interaction is reported to be an essential requirement for the color shift. [source]


    Understanding the Nature of the States Responsible for the Green Emission in Oxidized Poly(9,9-dialkylfluorene)s: Photophysics and Structural Studies of Linear Dialkylfluorene/Fluorenone Model Compounds

    ADVANCED FUNCTIONAL MATERIALS, Issue 13 2009
    Khai Leok Chan
    Abstract Here, the optical properties of a series of structurally well-defined model compounds for oxidatively degraded poly(dialkylfluorenes) (PFs) are reported. Specifically, linear compounds comprising one, two, or four dihexylfluorene (F) moieties together with one fluorenone (O) moiety placed either at the end or in the center of each chain (i.e., FO, FFO, FOF, FFOFF) are studied. The results support the recent observation that the photophysics of the fluorenone-centered "pentamer" (FFOFF) is most similar to that of oxidized PFs. They further demonstrate that molecule,molecule interaction is essential to activate the green emission band. Investigations by X-ray diffraction (XRD) identify the solid-state structure of a representative member of this class of compounds and reveal inter-molecular interaction through dipole,dipole coupling between neighboring fluorenone moieties. [source]


    On the Origin of Green Emission in Polyfluorene Polymers: The Roles of Thermal Oxidation Degradation and Crosslinking,

    ADVANCED FUNCTIONAL MATERIALS, Issue 8 2004
    W. Zhao
    Abstract The green emission of poly(9,9,,-dioctylfluorenyl-2,7,,-diyl), end-capped by polyhedral oligomeric silsequioxanes, (PFO-POSS) has been investigated by photoluminescence (PL) and photoexcitation (PE), gel permeation chromatography (GPC), and transmission Fourier transform infrared (FTIR) spectroscopy. The green emission is closely correlated with thermal oxidation degradation and crosslinking of the polymer and is enhanced by annealing at elevated temperatures. The green-to-blue emission intensity ratio, used to assess the emission properties of thin (90,nm) films, was 3.70, 4.35, and 1.54 for an air-annealed film, its insoluble residue (crosslinked), and a film cast from its soluble portion, respectively. For thick (5,6,,m) film, the ratios are 13.33, 13.33, and 0.79, respectively. However, FTIR spectroscopy of thick films leads to the conclusion that the carbonyl-to-aromatic ring concentration ratio are 0.018, 0.015, and 0.032, respectively. Focusing on the recast films, the green emission is relatively low while the carbonyl concentration is relatively high. This suggests that the energy traps at crosslinked chains play an important role in green emission. It is likely that the crosslinking enhances the excitation energy migration and energy transfer to the defects by hindering chain segment twisting. [source]


    Preparation, structure and photoluminescence properties of SiO2,coated ZnS nanowires

    CRYSTAL RESEARCH AND TECHNOLOGY, Issue 10 2010
    Changhyun Jin
    Abstract It is essential to passivate one-dimensional (1D) nanostructures with insulating materials to avoid crosstalking as well as to protect them from contamination and oxidation. The structure and influence of thermal annealing on the photoluminescence properties of ZnS-core/SiO2 -shell nanowires synthesized by the thermal evaporation of ZnS powders followed by the sputter deposition of SiO2 were investigated. Transmission electron microscopy and X-ray diffraction analyses revealed that the cores and shells of the core-shell nanowires were single crystal zinc blende-type ZnO and amorphous SiO2, respectively. Photoluminescence (PL) measurement showed that the core-shell nanowires had a green emission band centered at around 525 nm with a shoulder at around 385 nm. The PL emission of the core-shell nanowires was enhanced in intensity by annealing in an oxidative atmosphere and further enhanced by subsequently annealing in a reducing atmosphere. Also the origin of the enhancement of the green emission by annealing is discussed based on the energy-dispersive X-ray spectroscopy analysis results. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Optical properties of ZnO nanotubes

    CRYSTAL RESEARCH AND TECHNOLOGY, Issue 6 2010
    Hongju Zhai
    Abstract Tubular ZnO nanostructures have been obtained via a hydrothermal method at low temperature (90 °C) without any catalysts or templates. The XRD measurement reveals that the tubes are single crystals with hexagonal wurtzite structure. SEM shows that the diameters of ZnO nanotubes ranged from 400 to 550 nm. The Raman and PL spectra indicate that oxygen vacancies or Zn interstitials are responsible for the green emission in the ZnO nanotubes. A possible growth mechanism on the formation of crystalline ZnO nanotubes has been presented. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Low temperature hydrothermal growth and optical properties of ZnO nanorods

    CRYSTAL RESEARCH AND TECHNOLOGY, Issue 1 2009
    J. H. Yang
    Abstract Well-faceted hexagonal ZnO nanorods have been synthesized by a simple hydrothermal method at relative low temperature (90°C) without any catalysts or templates. Zinc oxide (ZnO) nanorods were grown in an aqueous solution that contained Zinc chloride (ZnCl2, Aldrich, purity 98%) and ammonia (25%). Most of the ZnO nanorods show the perfect hexagonal cross section and well-faceted top and side surfaces. The diameter of ZnO nanorods decreased with the reaction time prolonging. The samples have been characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) measurement. XRD pattern confirmed that the as-prepared ZnO was the single-phase wurtzite structure formation. SEM results showed that the samples were rod textures. The surface-related optical properties have been investigated by photoluminescence (PL) spectrum and Raman spectrum. Photoluminescence measurements showed each spectrum consists of a weak band ultraviolet (UV) band and a relatively broad visible light emission peak for the samples grown at different time. It has been found that the green emission in Raman measurement may be related to surface states. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Versatile, Benzimidazole/Amine-Based Ambipolar Compounds for Electroluminescent Applications: Single-Layer, Blue, Fluorescent OLEDs, Hosts for Single-Layer, Phosphorescent OLEDs

    ADVANCED FUNCTIONAL MATERIALS, Issue 16 2009
    Chih-Hsin Chen
    Abstract A series of compounds containing arylamine and 1,2-diphenyl-1H -benz[d]imidazole moieties are developed as ambipolar, blue-emitting materials with tunable blue-emitting wavelengths, tunable ambipolar carrier-transport properties and tunable triplet energy gaps. These compounds possess several novel properties: (1) they emit in the blue region with high quantum yields; (2) they have high morphological stability and thermal stability; (3) they are capable of ambipolar carrier transport; (4) they possess tunable triplet energy gaps, suitable as hosts for yellow-orange to green phosphors. The electron and hole mobilities of these compounds lie in the range of 0.68,144,×,10,6 and 0.34,147,×,10,6,cm2 V,1 s,1, respectively. High-performance, single-layer, blue-emitting, fluorescent organic light-emitting diodes (OLEDs) are achieved with these ambipolar materials. High-performance, single-layer, phosphorescent OLEDs with yellow-orange to green emission are also been demonstrated using these ambipolar materials, which have different triplet energy gaps as the host for yellow-orange-emitting to green-emitting iridium complexes. When these ambipolar, blue-emitting materials are lightly doped with a yellow-orange-emitting iridium complex, white organic light-emitting diodes (WOLEDs) can be achieved, as well by the use of the incomplete energy transfer between the host and the dopant. [source]


    Polyfluorene Light-Emitting Diodes: Understanding the Nature of the States Responsible for the Green Emission in Oxidized Poly(9,9-dialkylfluorene)s: Photophysics and Structural Studies of Linear Dialkylfluorene/Fluorenone Model Compounds (Adv. Funct.

    ADVANCED FUNCTIONAL MATERIALS, Issue 13 2009
    Mater.
    Polyfluorenes, whilst attractive candidates for polymer light-emitting diodes, are susceptible to oxidative degradation. This degradation results in significant green emission. Although it has been linked to the formation of fluorenones, the precise relationship between fluorenones and the observed color shift remains widely debated. On page 2147, Chan et al. report a study on this relationship with the use of a series of model compounds. Inter-molecular fluorenone,fluorenone interaction is reported to be an essential requirement for the color shift. [source]


    Synthesis and Structure,Property Correlation in Shape-Controlled ZnO Nanoparticles Prepared by Chemical Vapor Synthesis and their Application in Dye-Sensitized Solar Cells

    ADVANCED FUNCTIONAL MATERIALS, Issue 6 2009
    Revathi R. Bacsa
    Abstract Here, the large scale synthesis of nanocrystalline ZnO spheres and tetrapods in the size range of 8,40,nm by chemical vapor synthesis using zinc metal as precursor is described. A detailed study of the effect of experimental parameters on the morphology and yield is presented. High-resolution transmission electron microscopy images of the tetrapods show that they are formed by the self assembly of four nanorods in the vapor phase. The tetrapods have optical absorption coefficients that are one order of magnitude greater than the spheres and show intense UV luminescence whereas the spheres show only the green emission. The observed differences in the optical properties are related to the presence of surface defects present in the nanospheres. The tetrapods have increased efficiencies for application in dye sensitized solar cells when compared to spheres. [source]


    Bioinspired Design of SrAl2O4:Eu2+ Phosphor

    ADVANCED FUNCTIONAL MATERIALS, Issue 4 2009
    Mariya H. Kostova
    Abstract A phosphor based on Sr0.97Al2O4:Eu0.03 with a biomorphous morphology is manufactured via vacuum assisted infiltration of wood tissue (Pinus sylvestris) with a precursor nitrate solution. The nitrate solution penetrates homogeneously into the uniform arrangement of rectangular shaped tracheidal cells of the wood tissue. According to scanning electron microscopy, the original wood cell walls are completely transformed retaining the original wood structure. The major crystalline phase is monoclinic SrAl2O4, detected by X-ray diffraction and confirmed by Rietveld refinement. Energy-dispersive X-ray analysis proves the homogeneous conversion of the original wood cell wall into Sr0.97Al2O4:Eu0.03 struts. The optical properties of the resulting phosphor material are determined by photoluminescence and cathode-luminescence spectroscopy in scanning electron microscopy. The biotemplated Sr0.97Al2O4:Eu0.03 shows a characteristic green emission at 530,nm (2.34,eV). Shaping biomorphous SrAl2O4:Eu2+ phosphor with a microstructure pseudomorphous to the bioorganic template anatomy offers a novel approach for designing micropatterned phosphor materials. [source]


    The Influence of UV Irradiation on Ketonic Defect Emission in Fluorene-Based Copolymers,

    ADVANCED FUNCTIONAL MATERIALS, Issue 17 2008
    Horst Scheiber
    Abstract The influence of UV irradiation in inert atmosphere on the emission spectrum of fluorenone containing poly[9,9-bis(2-ethyl)hexylfluorene] (PF2/6) has been investigated by means of optical absorption, photoluminescence (PL) and Fourier transform infrared (FTIR) spectroscopy. It is shown that a substantial reduction of green emission arising from ketonic defect sites can be achieved by irradiation of thin films with UV light. This is found to be accompanied by partial cross-linking of the films. FTIR measurements show no reduction of the C=O stretching mode upon irradiation, and, moreover, the degree of cross-linking does not scale with the relative fluorenone content (0.1, 0.5, and 5%). Therefore, the reduced emission intensity in the green spectral region is rather associated with the occurrence of interruptions in the polymer backbone, which reduce the effective conjugation length and subsequently inhibit the energy transfer onto the ketonic defect sites. The found results enabled us to build organic light emitting devices (OLEDs) that can be structured by selective illumination of the emitting layer with an intense UV light source. This method allows for the fabrication of rather efficient (2000,cd,m,2 at 7,V) two-color OLEDs. [source]


    Stable Blue Emission from a Polyfluorene/Layered-Compound Guest/Host Nanocomposite,

    ADVANCED FUNCTIONAL MATERIALS, Issue 7 2006
    E. Aharon
    Abstract In this study a blue-light-emitting conjugated polymer, poly(9,9-dioctylfluorene), is confined to the interlayer space of inorganic, layered metal dichalcogenide materials, metallic MoS2, and semiconducting SnS2. The nanocomposites are prepared through Li intercalation into the inorganic compound, exfoliation, and restacking in the presence of the polymer. X-ray diffraction and optical absorption measurements indicate that a single conjugated polymer monolayer, with an overall extended planar morphology conformation, is isolated between the inorganic sheets, so that polymer aggregation or ,,, interchain interactions are significantly reduced. Photoluminescence (PL) measurements show that the appearance of the undesirable green emission observed in pristine polymer films is suppressed by incorporating the polymer into the inorganic matrix. The blue emission of the intercalated polymer is stable for extended periods of time, over two years, under ambient conditions. Furthermore, the green emission is absent in the PL spectra of nanocomposite films heated at 100,°C for 7,h in air with direct excitation of the keto defect. Finally, no green emission was observed in the electroluminescence spectrum of light-emitting devices fabricated with a polymer-intercalated SnS2 nanocomposite film. These results support the proposed hypothesis that fluorenone defects alone are insufficient to generate the green emission and that interchain interactions are also required. [source]


    On the Origin of Green Emission in Polyfluorene Polymers: The Roles of Thermal Oxidation Degradation and Crosslinking,

    ADVANCED FUNCTIONAL MATERIALS, Issue 8 2004
    W. Zhao
    Abstract The green emission of poly(9,9,,-dioctylfluorenyl-2,7,,-diyl), end-capped by polyhedral oligomeric silsequioxanes, (PFO-POSS) has been investigated by photoluminescence (PL) and photoexcitation (PE), gel permeation chromatography (GPC), and transmission Fourier transform infrared (FTIR) spectroscopy. The green emission is closely correlated with thermal oxidation degradation and crosslinking of the polymer and is enhanced by annealing at elevated temperatures. The green-to-blue emission intensity ratio, used to assess the emission properties of thin (90,nm) films, was 3.70, 4.35, and 1.54 for an air-annealed film, its insoluble residue (crosslinked), and a film cast from its soluble portion, respectively. For thick (5,6,,m) film, the ratios are 13.33, 13.33, and 0.79, respectively. However, FTIR spectroscopy of thick films leads to the conclusion that the carbonyl-to-aromatic ring concentration ratio are 0.018, 0.015, and 0.032, respectively. Focusing on the recast films, the green emission is relatively low while the carbonyl concentration is relatively high. This suggests that the energy traps at crosslinked chains play an important role in green emission. It is likely that the crosslinking enhances the excitation energy migration and energy transfer to the defects by hindering chain segment twisting. [source]


    Well-Aligned ZnO Nanowire Arrays Fabricated on Silicon Substrates ,

    ADVANCED FUNCTIONAL MATERIALS, Issue 6 2004
    C. Geng
    Abstract Arrays of well-aligned single-crystal zinc oxide (ZnO) nanowires of uniform diameter and length have been synthesized on a (100) silicon substrate via a simple horizontal double-tube system using chemical vapor transport and condensation method. X-ray diffraction and transmission electron microscopy (TEM) characterizations showed that the as-grown nanowires had the single-crystal hexagonal wurtzite structure with detectable defects and a <0002> growth direction. Raman spectra revealed phonon confinement effect when compared with those of ZnO bulk powder, nanoribbons, and nanoparticles. Photoluminescence exhibited strong ultraviolet emission at 3.29,eV under 355,nm excitation and green emission at 2.21,eV under 514.5,nm excitation. No catalyst particles were found at the tip of the nanowires, suggesting that the growth mechanism followed a self-catalyzed and saturated vapor,liquid,solid (VLS) model. Self-alignment of nanowires was attributed to the local balance and steady state of vapor flow at the substrate. The growth technique would be of particular interest for direct integration in the current silicon-technology-based optoelectronic devices. [source]


    Soluble dithienothiophene polymers: Effect of link pattern

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 11 2009
    Shiming Zhang
    Abstract Soluble conjugated polymers based on 3,5-didecanyldithieno[3,2- b:2,,3,- d]thiophene,single-bond (1), double-bond (2), and triple-bond linked (3),were synthesized by palladium(0)-catalyzed Stille coupling reaction and oxidation polymerization. The thermal, absorption, emission, and electrochemical properties of these polymers were examined; the effect of the link pattern was studied. All polymers exhibit decomposition temperatures over 295 °C and glass-transition temperatures in the range of 137,202 °C. The absorption spectra of 1, 2, and 3 in thin films exhibit absorption maxima at 381, 584, and 444 nm, respectively. Polymer 1 exhibits intense green emission located at 510 nm in film, whereas polymers 2 and 3 are nonemissive both in solution and in film due to H-aggregate. Cyclic voltammograms of polymers 1, 2, and 3 display irreversible oxidation waves with onset oxidation potentials at 1.73, 0.78, and 1.03 V versus Ag+/Ag, respectively. Theory calculation on model compounds suggests that the dihedral angle decreases in the order of 1 > 3 > 2. On reducing the dihedral angle, the polymer exhibits a longer absorption maximum, a smaller bandgap, a less oxidizing potential and fluorescence quench, due to more coplanar and more ,-electron delocalized backbone structure. Polymer solar cells were fabricated based on the blend of polymer 2 and methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM). The power conversion efficiency of 0.45% was achieved under AM 1.5, 100 mW cm,2 using polymer 2:PCBM (1:2, w/w) as active layer. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2843,2852, 2009 [source]


    Random poly(fluorenylene-vinylene)s containing 3,7-Dibenzothiophene-5,5-dioxide units: Synthesis, photophysical, and electroluminescence properties

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 8 2009
    Roberto Grisorio
    Abstract The synthesis of new random poly(arylene-vinylene)s containing the electron withdrawing 3,7-dibenzothiophene-5,5-dioxide unit was achieved by the Suzuki,Heck cascade polymerization reaction. The properties of poly[9,9-bis(2-ethylhexyl)-2,7-fluorenylene-vinylene- co -3,7-dibenzothiophene-5,5-dioxide-vinylene] (50/50 mol/mol, P1) and poly[1,4-bis(2-ethylhexyloxy)-2,5-phenylene-vinylene- co -3,7-dibenzothiophene-5,5-dioxide-vinylene] (50/50 mol/mol, P2) were compared with those of terpolymers obtained by combining the fluorene, dibenzothiophene, and 1,4-bis(2-ethylexyloxy)benzene in 20/40/40 (P3), 50/25/25 (P4), and 80/10/10 (P5) molar ratios. The polymers were characterized by 1H NMR and IR, whereas their thermal properties were investigated by TGA and DSC. Polymers P1,5 are blue,green emitters in solution (,em between 481 and 521 nm) whereas a profound red shift observed in the solid state is emission (,em from 578 to 608 nm) that can be attributed both to the charge transfer stabilization exerted by the polar medium and to intermolecular interactions occurring in the solid state. Cyclic voltammetry permitted the evaluation of the ionization potentials and also revealed a quasi-reversible behavior in the reduction scans for the polymers (P1,4) containing the higher amounts of 3,7-dibenzothiophene-5,5-dioxide units. Electroluminescent devices with both ITO/PEDOT-PSS/P1,5/Ca/Al (Type I) and ITO/PEDOT-PSS/P1,5/Alq3/Ca/Al (Type II) configuration were fabricated showing a yellow to yellow,green emission. In the case of P4, a luminance of 1835 cd/m2 and an efficiency of 0.25 cd/A at 14 V were obtained for the Type II devices. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2093,2104, 2009 [source]


    Host copolymers containing pendant carbazole and oxadiazole groups: Synthesis, characterization and optoelectronic applications for efficient green phosphorescent OLEDs

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 15 2008
    Kun-Ming Yeh
    Abstract Vinyl copolymers (PCOn), containing pendant carbazole and aromatic 1,3,4-oxadiazole attached with dodecyloxy group, were prepared from their corresponding precursor poly(9-vinyl carbazole- co -4-vinylbenzyl chloride) (PCBn) by the Williamson condensation (n: mole% of 4-vinylbenzyl chloride). These copolymers were used as host materials for green phosphorescent light-emitting diodes after blending 4 wt % of Ir(ppy)3. PL spectra of the PCOn films showed the formation of excimer or exciplex. The phosphorescent EL devices were fabricated with a configuration of ITO/PEDOT:PSS/host copolymers:Ir(ppy)3/BCP/Ca/Al. The PL and EL spectra of the blends [PCOn:Ir(ppy)3] revealed dominant green emission at 517 nm attributed to Ir(ppy)3 due to efficient energy transfer from the host to Ir(ppy)3. Efficient green phosphorescent OLEDs was obtained when employing copolymer PCO16 as the host and Ir(ppy)3 as the guest. The maximal luminance efficiency and the maximal luminance of this device were 17.9 cd/A and 19,903 cd/m2, respectively. After doped with Ir(ppy)3, the morphology of the films, both controlled PCO20 and PCO20 with attached dodecyloxy groups, were investigated by tapping-mode AFM and FE-SEM. The film of PCO20 exhibited uniform, featureless image and showed much better device performance than PCO20, which have been attributed to good compatibility of PCO20 with Ir(ppy)3. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5180,5193, 2008 [source]


    Alkyl side chain driven tunable red,yellow,green emission: Investigation on the new ,-conjugated polymers comprising of 2,7-carbazole unit and 2,1,3-benzo-thiadiazole units with different side chains

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 4 2008
    Junping Du
    Abstract Four new soluble polymers containing a 2,7-carbazole unit and a 2,1,3-benzothiadiazole unit in the main chain were synthesized by Suzuki polycondensation. Variation of the substituent groups (R) at 5-position of 2,1,3-benzothiadiazole unit resulted in different color emission of the copolymers. Thus, when R was CH3 (or H), the polymer showed yellow,green (or red) emission; whereas the polymers showed the emission from green to yellow,green, when R was CH2(CH2)5CH3 or CH2OCH(CH3)2. To investigate the nature of the color change, a Gaussian 03 program was used for estimation of the dihedral angles between a 5-R-2,1,3-benzothiadiazole unit and a 2,7-carbazole unit. The results showed that the different substituents at 5-position of 2,1,3-benzothiadiazole brought about different the dihedral angles, which gave the different conjugation levels to the polymers. Hence, the tunablity of emission color may be attributed to the different conjugation levels between 2,7-carbazole units and 5-R-2,1,3-benzothiadiazole units induced by simply changing substituent groups at 5-position of benzothiadiazole unit. Electrochemically, the copolymers exhibited a higher oxidation potential as well as the reversible reduction behavior bearing from 2,1,3-benzothiadiazole unit. To investigate the electroluminescent properties of the polymers, the nonoptimized devices were fabricated and the results showed that the electroluminescent emission wavelength was basically similar to that of the photoluminescent. All polymers showed good thermal stability with 5 wt % loss temperature of more than 296 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1376,1387, 2008 [source]


    Synthesis and characterization of novel germanium-containing poly(p -phenylenevinylene) derivatives

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 3 2008
    Hoon-Je Cho
    Abstract Novel blue-emitting germanium-containing poly(p -phenylenevinylene) (PPV) derivatives with well-defined conjugation lengths were synthesized via Wittig-condensation polymerizations. The polymers can be color-tuned by the introduction of various chromophores into the PPV-based polymer backbones. The photoluminescence (PL) spectra of the polymers, GePVK (containing carbazole moieties), GeMEH (containing dialkoxybenzene moieties), and GePTH (containing phenothiazine moieties), were found to exhibit blue, greenish blue, and green emissions, respectively. GePTH produces more red-shifted emission than GeMEH and GEPVK, resulting in green emission, and the solution and solid state PL spectra of GePVK consist of almost blue emission. The electroluminescence spectra of GeMEH and GePTH contain yellowy green and yellow colors, respectively. Interestingly, GePVK exhibits white emission with CIE coordinates of (0.33, 0.37) due to electroplex emission in the light-emitting diodes. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 979,988, 2008 [source]


    Photophysical Properties of Terbium Molecular-based Hybrids Assembled with Novel Ureasil Linkages

    PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2007
    Bing Yan
    Three silica-based organic,inorganic hybrid systems composed of hydroxyl aromatic derivatives (2-acetylphenol [HAP], 2-hydroxy-3-methylbenzoic acid [HMBA], 3-hydroxy-meta-phthalic acid [HMPHTH] complexes) were prepared via a sol,gel process. The active hydroxyl groups of the three ligands grafted by 3-(triethoxysilyl)-propyl isocyanate (TESPIC) through hydrogen transfer addition reaction were used as multi-functional bridge components, which can coordinate to Tb3+ with carbonyl groups, strongly absorb ultraviolet light and effectively transfer energy to Tb3+ through their triplet excited state, as well as undergo polymerization or crosslinking reactions with tetraethoxysilane (TEOS), for anchoring terbium ions to silica backbone. NMR, FT-IR, UV,vis absorption, luminescence spectroscopy was used to investigate the obtained hybrid material. UV excitation in the organic component resulted in strong green emission from Tb3+ ions due to an efficient ligand-to-metal energy transfer mechanism. [source]


    Green photoluminescence of SrGa2S4:Sn phosphors

    PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 11 2009
    Mutsumi Nagata
    Abstract The phosphor SrGa2S4:Sn exhibits a new green photoluminescence (PL) whose spectrum peaks at 534,nm. The phosphor also exhibits yellow and orange PL with very broad spectral bands when the excitation wavelength of the UV light is changed. These emissions are caused by the 5p,5s transition in the 5s2 configuration of Sn2+ ions occupying Sr2+ sites. The origin of the green emission was investigated by analyzing the PL excitation spectra and the electronic states of Sn2+ substituting at three different Sr2+ sites. The electronic states were analyzed in a first-principles calculation of the density of states. [source]


    Cathodoluminescence properties of zinc oxide nanoparticles

    PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 2 2004
    M. R. Phillips
    Abstract Zinc oxide nano-particles (25 nm) have been investigated by cathodoluminescence spectroscopy (300 nm,1700 nm) at 80 K and 300 K following thermal annealing in high purity H2/N2, N2, O2 and Ar gaseous atmospheres. The intensity of the ZnO near band edge peak was significantly increased after heat treatment in hydrogen. Conversely, thermal annealing in the other gas types decreased this emission. This effect is attributed to hydrogen passivation of competitive non-radiative defect centers, most likely bulk zinc vacancy centers. The appearance of a strong green emission centered at 2.4 eV following thermal annealing in all gas atmospheres is ascribed to the formation of bulk oxygen vacancy defects. A strong red shift of the near band edge emission with increasing beam current at 300 K is accredited to electron beam heating rather than to an increase in the carrier density. Electron beam heating is evidenced by the occurrence of a strong black body emission in the near infrared spectral region. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Investigation on visible emission control of ZnO thin film

    PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 10 2004
    Hong Seong Kang
    Abstract ZnO thin films were deposited on various substrates and ZnO-Si-ZnO multi-layer thin films were fabricated by pulsed laser deposition (PLD). ZnO thin films showed the three photoluminescence bands centered at around ultraviolet (380 nm), green (490,530 nm) and orange (570,640 nm) region. The region and intensity of visible emission of ZnO thin films were controlled as substrate and annealing treatment. As-grown ZnO thin film showed strong ultraviolet (UV) emission. ZnO thin films on (001) Al2O3 showed the increase of green emission caused by oxygen vacancies in the range of 490 nm to 530 nm, those on (100) InP showed the increase of orange emission caused by oxygen interstitials in the range of 610 nm to 640 nm. The increase of orange emission caused by oxygen interstitials was also observed from ZnO-Si-ZnO multi-layer thin films. The visible emission mechanism of ZnO was investigated. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    The structure of mAG, a monomeric mutant of the green fluorescent protein Azami-Green, reveals the structural basis of its stable green emission

    ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 5 2010
    Tatsuki Ebisawa
    Monomeric Azami-Green (mAG) from the stony coral Galaxea fascicularis is the first known monomeric green-emitting fluorescent protein that is not a variant of Aequorea victoria green fluorescent protein (avGFP). These two green fluorescent proteins are only 27% identical in their amino-acid sequences. mAG is more similar in its amino-acid sequence to four fluorescent proteins: Dendra2 (a green-to-red irreversibly photoconverting fluorescent protein), Dronpa (a bright-and-dark reversibly photoswitchable fluorescent protein), KikG (a tetrameric green-emitting fluorescent protein) and Kaede (another green-to-red irreversibly photoconverting fluorescent protein). To reveal the structural basis of stable green emission by mAG, the 2.2,Å crystal structure of mAG has been determined and compared with the crystal structures of avGFP, Dronpa, Dendra2, Kaede and KikG. The structural comparison revealed that the chromophore formed by Gln62-Tyr63-Gly64 (QYG) and the fixing of the conformation of the imidazole ring of His193 by hydrogen bonds and van der Waals contacts involving His193, Arg66 and Thr69 are likely to be required for the stable green emission of mAG. The crystal structure of mAG will contribute to the design and development of new monomeric fluorescent proteins with faster maturation, brighter fluorescence, improved photostability, new colours and other preferable properties as alternatives to avGFP and its variants. [source]


    Molecular Materials with Contrasting Optical Responses from a Single-Pot Reaction and Fluorescence Switching in a Carbon Acid

    CHEMISTRY - A EUROPEAN JOURNAL, Issue 12 2009
    A. Patra
    Abstract Three for the price of one: The reaction of tetracyanoquinodimethane with an aromatic amine is shown to follow an unusual course leading to three products in a single pot. The product molecules form a family of materials with contrasting optical responses, in that they exhibit light emission of different colors and emission switching that is sensitively triggered by acidic/basic environments (see scheme). A wide variety of amines are known to react with 7,7,8,8-tetracyanoquinodimethane (TCNQ) to yield push,pull diaminodicyanoquinodimethanes with a strongly zwitterionic structure and significant optical and nonlinear optical properties. A novel course of reaction is observed now with the amine 2-methyl-4-chloroaniline, which leads to three well-defined products, A,C, in a single pot. A and B are formed through the replacement of one cyano group in TCNQ by the amine; A is a carbon acid and B is its corresponding salt. C is the conventional product in which two cyano groups in TCNQ are replaced by the amine. The products are characterized structurally and spectroscopic studies reveal contrasting optical responses. A is nonfluorescent, whereas B and C show red and green emission, respectively, in the solution and solid states. The acid/conjugate-base pair A and B can be interconverted through facile, reversible, and repeated deprotonation/protonation cycles, which are accompanied by instantaneous switching of the fluorescence. The current study illustrates an interesting case of a single-pot reaction yielding different optical materials with attributes that can be switched through simple approaches such as protonation or tuned through modification of the push,pull characteristics. [source]


    Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: Defect Origins and Emission Controls

    ADVANCED FUNCTIONAL MATERIALS, Issue 4 2010
    Haibo Zeng
    Abstract High concentrations of defects are introduced into nanoscale ZnO through non-equilibrium processes and resultant blue emissions are comprehensively analyzed, focusing on defect origins and broad controls. Some ZnO nanoparticles exhibit very strong blue emissions, the intensity of which first increase and then decrease with annealing. These visible emissions exhibit strong and interesting excitation dependences: 1) the optimal excitation energy for blue emissions is near the bandgap energy, but the effective excitation can obviously be lower, even 420,nm (2.95,eV,<,Eg,=,3.26,eV); in contrast, green emissions can be excited only by energies larger than the bandgap energy; and, 2) there are several fixed emitting wavelengths at 415, 440, 455 and 488,nm in the blue wave band, which exhibit considerable stability in different excitation and annealing conditions. Mechanisms for blue emissions from ZnO are proposed with interstitial-zinc-related defect levels as initial states. EPR spectra reveal the predominance of interstitial zinc in as-prepared samples, and the evolutions of coexisting interstitial zinc and oxygen vacancies with annealing. Furthermore, good controllability of visible emissions is achieved, including the co-emission of blue and green emissions and peak adjustment from blue to yellow. [source]


    Carbazolevinylene-based polymers and model compounds with oxadiazole and triphenylamine segments: Synthesis, photophysics, and electroluminescence

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 16 2008
    Panagiotis D. Vellis
    Abstract Two new soluble alternating carbazolevinylene-based polymers POXD and PTPA as well as the corresponding model compounds MOXD and MTPA were synthesized by Heck coupling. POXD and MOXD contained 2,5-diphenyloxadiazole segments, while PTPA and MTPA contained triphenylamine segments. All samples displayed high thermal stability. The polymers had higher glass transition temperature (Tg) than their corresponding model compounds. The samples showed absorption maximum at 364,403 nm with optical band gap of 2.62,2.82 eV. They emitted blue-green light with photoluminescence (PL) emission maximum at 450,501 nm and PL quantum yields in THF solution of 0.15,0.36. The absorption and the PL emission maxima of PTPA and MTPA were blue-shifted as compared to those of POXD and MOXD. The electroluminescence (EL) spectra of multilayered devices made using four materials exhibited bluish green emissions, which is well consistent with PL spectra. The EL devices made using poly(vinyl carbazole) doped with MOXD and MTPA as emitting materials showed luminances of 12.1 and 4.8 cd m,2. POXD and PTPA exhibited 25.4, and 96.3 cd m,2, respectively. The polymer containing the corresponding molecules in the repeating group showed much higher device performances. Additionally, POXD and MOXD exhibited better stability of external quantum efficiency (EQE) and luminous efficiency with current density resulting from enhancing the electron transporting properties. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5592,5603, 2008 [source]


    Synthesis and characterization of novel germanium-containing poly(p -phenylenevinylene) derivatives

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 3 2008
    Hoon-Je Cho
    Abstract Novel blue-emitting germanium-containing poly(p -phenylenevinylene) (PPV) derivatives with well-defined conjugation lengths were synthesized via Wittig-condensation polymerizations. The polymers can be color-tuned by the introduction of various chromophores into the PPV-based polymer backbones. The photoluminescence (PL) spectra of the polymers, GePVK (containing carbazole moieties), GeMEH (containing dialkoxybenzene moieties), and GePTH (containing phenothiazine moieties), were found to exhibit blue, greenish blue, and green emissions, respectively. GePTH produces more red-shifted emission than GeMEH and GEPVK, resulting in green emission, and the solution and solid state PL spectra of GePVK consist of almost blue emission. The electroluminescence spectra of GeMEH and GePTH contain yellowy green and yellow colors, respectively. Interestingly, GePVK exhibits white emission with CIE coordinates of (0.33, 0.37) due to electroplex emission in the light-emitting diodes. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 979,988, 2008 [source]