Graphite Layers (graphite + layer)

Distribution by Scientific Domains


Selected Abstracts


Vertical Epitaxial Co5Ge7 Nanowire and Nanobelt Arrays on a Thin Graphitic Layer for Flexible Field Emission Displays

ADVANCED MATERIALS, Issue 48 2009
Hana Yoon
Vertically aligned single-crystalline Co5Ge7 nanowire (NW) and nanobelt arrays are grown on a very thin graphite layer as well as a curved graphite layer with a good epitaxial lattice match. Co5Ge7 NW arrays, thus grown, show very efficient field emission properties comparable to those of carbon nanotubes and may be used for flexible field emission displays in the future. [source]


Novel Palladium-on-Carbon/Diphenyl Sulfide Complex for Chemoselective Hydrogenation: Preparation, Characterization, and Application

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 3 2008
Akinori Mori
Abstract A diphenyl sulfide immobilized on palladium-on-carbon system, Pd/C[Ph2S], was developed to achieve the highly chemoselective hydrogenation of alkenes, acetylenes, azides, and nitro groups in the presence of aromatic ketones, halides, benzyl esters, and N-Cbz protective groups. Instrumental analyses of the heterogeneous catalyst demonstrated that diphenyl sulfide was embedded on Pd/C via coordination of its sulfur atom to palladium metal or physical interaction with graphite layers of the activated carbon. The catalyst could be recovered and reused at least five times without any significant loss of the reactivity. [source]


Processing and Tribological Properties of Si3N4/Carbon Short Fiber Composites

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 7 2003
Hideki Hyuga
Si3N4/carbon fiber composites were fabricated using several types of fiber. All the composites had higher fracture toughness compared with monolithic Si3N4 ceramics. Tribological properties were investigated by a ball-on-disk method under unlubricated conditions. The composite containing fibers with a high orientation of graphite layers and high graphite content indicated a low friction coefficient. It was identified, by Raman spectroscopy, that graphite was transferred from the composite to the Si3N4 ball of the counterbody during the wear test. This transferred layer was effective for producing the low friction behavior of the composite. [source]


Development of graphene layers by reduction of graphite fluoride C2F surface

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 11-12 2009
A. V. Okotrub
Abstract We studied a possibility of reduction of the surface of graphite fluoride obtained by fluorination of highly oriented pyrolytic graphite (HOPG) by a gaseous mixture of BrF3 and Br2. X-ray diffraction (XRD) revealed a layered structure of the fluorinated product being a second-stage intercalate due to a presence of bromine molecules between the fluorinated graphite layers. Scanning tunneling microscopy and spectroscopy showed that the "old" surface of graphite fluoride (exposed to the ambient air) has the graphite-like structure, while the fresh cleaved surface is non-conductive. Therefore, the outer layers of graphite fluoride can be reduced by water present in the laboratory atmosphere. The sample was treated by H2O vapor to confirm that. The reduction was controlled by Raman spectroscopy using intensity of the 1360 and 1580,cm,1 bands. The energy dependent photoelectron spectroscopy was used for estimation of thickness of the reduction layer, which was found, does not exceed 2,3 graphite layers. The obtained results indicate the possibility of synthesis of graphene layers on dielectric fluorinated graphite matrix. [source]


Molecularly and atomically thin semiconductor and carbon nanoshells

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 11 2007
V. Ya.
Abstract Approaches to the formation of molecularly and atomically thin solid shells based on the transformation of thin planar films into more functional 3D precise shells are outlined. In the overview part of the present work several examples are given illustrating the possibility to obtain in bent films new effects never observed in planar films and to fabricate new nanomaterials from highly , ordered systems of interacting hybrid shells. In the original part of the article, we demonstrate the formation of nanoshells from monoatomic graphite layers, graphene, and also show the possibility of controllable detachment of graphene from graphite substrates with the help of AFM. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Gas Diffusion Electrodes for Use in an Amperometric Enzyme Biosensor

ELECTROANALYSIS, Issue 21 2008
Martin Hämmerle
Abstract The preparation of gas diffusion electrodes and their use in an amperometric enzyme biosensor for the direct detection of a gaseous analyte is described. The gas diffusion electrodes are prepared by covering a PTFE membrane (thickness 250,,m, pore size 2,,m, porosity 35%) with gold, platinum, or a graphite/PTFE mixture. Gold and platinum are deposited by e-beam sputtering, whereas the graphite/PTFE layer is prepared by vacuum filtration of a respective aqueous suspension. These gas diffusion electrodes are exemplarily implemented as working electrodes in an amperometric biosensor for gaseous formaldehyde containing NAD-dependent formaldehyde dehydrogenase from P. putida [EC. 1.2.1.46] as enzyme and 1,2-naphthoquinone-4-sulfonic acid as electrochemical mediator. The resulting sensors are compared with regard to background current, signal noise, linear range, sensitivity, and detection limit. In this respect, sensors with gold or graphite/PTFE covered membranes outclass ones with platinum for this particular analyte and sensor configuration. [source]