Home About us Contact | |||
Granule Exocytosis (granule + exocytosi)
Selected AbstractsRab11 and its effector Rip11 participate in regulation of insulin granule exocytosisGENES TO CELLS, Issue 4 2009Kenji Sugawara Rab GTPases and their effectors play important roles in membrane trafficking between cellular compartments in eukaryotic cells. In the present study, we examined the roles of Rab11B and its effectors in insulin secretion in pancreatic ,-cells. In the mouse insulin-secreting cell line MIN6, Rab11 was co-localized with insulin-containing granules, and over-expression of the GTP- or the GDP-bound form of Rab11B significantly inhibited regulated secretion, indicating involvement of Rab11B in regulated insulin secretion. To determine the downstream signal of Rab11-mediated insulin secretion, we examined the effects of various Rab11-interacting proteins on insulin secretion, and found that Rip11 is involved in cAMP-potentiated insulin secretion but not in glucose-induced insulin secretion. Analyses by immunocytochemistry and subcellular fractionation revealed Rip11 to be co-localized with insulin granules. The inhibitory effect of the Rip11 mutant was not altered in MIN6 cells lacking Epac2, which mediates protein kinase A (PKA)-independent potentiation of insulin secretion, compared with wild-type MIN6 cells. In addition, Rip11 was found to be phosphorylated by PKA in MIN6 cells. The present study shows that both Rab11 and its effector Rip11 participate in insulin granule exocytosis and that Rip11, as a substrate of PKA, regulates the potentiation of exocytosis by cAMP in pancreatic ,-cells. [source] Fas and TNFR1, but not cytolytic granule-dependent mechanisms, mediate clearance of murine liver adenoviral infection,HEPATOLOGY, Issue 1 2005Marwan S. Abougergi After intravenous injection of replication-deficient adenovirus, hepatocytes are transduced and express high levels of adenovirus-encoded genes. However, adenovirally encoded gene expression is ablated rapidly by CD8+ T-cell,dependent mechanisms. Thus, this model is suitable for examining intrahepatic cytotoxic T lymphocyte (CTL) effector mechanisms. In the present studies, recombinant adenoviruses encoding secreted (human apolipoprotein A-I) or intracellular (,-galactosidase) gene products were infused into mice with genetic deficiencies affecting the granule exocytosis-, Fas-, or tumor necrosis factor receptor 1 (TNFR1)-mediated pathways of CTL and natural killer cell effector function; the rates of clearance of adenovirus-encoded gene products were assessed. Clearance of secreted or intracellular adenoviral gene products was not delayed in perforin-deficient mice or dipeptidyl peptidase I-deficient mice, which fail to process and activate granzyme A or granzyme B. TNFR1-deficient mice also exhibited no delay in clearance of adenoviral gene products. However, adenoviral clearance from Fas-deficient mice was delayed, and such delays were much greater in mice deficient in both TNFR1 and Fas. In contrast, chimeric mice lacking both hepatic Fas and lymphocyte perforin function exhibited no greater delay in adenoviral clearance than chimeras deficient only in hepatic Fas expression. In conclusion, Fas-dependent mechanisms are required for efficient clearance of virally infected hepatocytes and, in Fas-deficient animals, TNFR1-dependent mechanisms provide an alternative mechanism for hepatic adenovirus clearance. In contrast, perforin- and granule protease,dependent cytotoxicity mechanisms play no apparent role in clearance of adenovirus from the liver. (HEPATOLOGY 2005;41:97,105.) [source] Signalling mechanisms for Toll-like receptor-activated neutrophil exocytosis: key roles for interleukin-1-receptor-associated kinase-4 and phosphatidylinositol 3-kinase but not Toll/IL-1 receptor (TIR) domain-containing adaptor inducing IFN-, (TRIF)IMMUNOLOGY, Issue 3 2009Agnieszka A. Brzezinska Summary Lipopolysaccharide (LPS) stimulates exocytosis in neutrophils. The signalling molecules involved in the regulation of this mechanism are currently unknown. Using neutrophils from interleukin-1-receptor-associated kinase (IRAK)-4- and Toll/IL-1 receptor (TIR) domain-containing adaptor inducing IFN-, (TRIF)-deficient mice, we dissected the signalling pathways that control exocytosis. We analysed exocytosis of peroxidase-negative and azurophilic granules by following the mobilization of the ,2-integrin subunit CD11b and myeloperoxidase (MPO)-containing granules, respectively. IRAK-4-null neutrophils showed marked defects in both peroxidase-negative and azurophilic granule exocytosis in response to LPS. In contrast, the exocytic response to LPS of TRIF-deficient neutrophils was not different from that of wild-type cells. No differences were observed in the exocytosis of secretory organelles between IRAK-4-null and wild-type neutrophils when they were stimulated with the phorbol ester phorbol 12-myristate 13-acetate (PMA). Electron microscopy analysis showed that no morphological abnormalities were present in the granules of IRAK-4-deficient neutrophils, suggesting that the lack of exocytic response to LPS is not attributable to developmental abnormalities. Using pharmacological inhibitors, we found that p38 mitogen-activated protein kinase (p38MAPK) is essential for the exocytosis of all neutrophil secretory organelles in response to LPS. Interestingly, we found that phosphatidylinositol 3-kinase (PI3K) is essential for azurophilic granule exocytosis but not for the mobilization of other neutrophil granules in response to LPS. Azurophilic granule exocytosis in response to Listeria monocytogenes was dependent on PI3K but not IRAK-4 activity, suggesting that alternative signalling pathways are activated in IRAK-4-deficient neutrophils exposed to whole bacteria. Our results identified IRAK-4, p38MAPK and PI3K as important regulatory components with different roles in the signalling pathways that control Toll-like receptor ligand-triggered neutrophil exocytosis. [source] Suppression of adenoviral gene expression in the liver: role of innate vs adaptive immunity and their cell lysis mechanismsLIVER INTERNATIONAL, Issue 3 2005Masahiro Minagawa Abstract Background: Injection of adenoviral constructs causes liver infection prompting immunity, which suppress viral gene expression. Innate and adaptive immunity mediate these processes raising the question which pathways are the most prominent. Methods: Adenovirus expressing the ,-galactosidase (,-gal) gene was injected into normal and immunodeficient mice. Elimination of ,-gal-expressing hepatocytes and increases in liver enzymes were assayed. Major histocompatibility complex (MHC) class I densities, perforin channel insertion and apoptosis by Fas and tumor necrosis factor (TNF)-, were assayed. Results: At high virus doses, suppression of viral gene expression was as efficient in immunodeficient as in normal mice, while at low doses effects of cytotoxic T lymphocytes (CTL) were demonstrable. Despite CTL priming and elimination of infected hepatocytes no liver injury is detected. Hepatocyte MHC I densities were able to trigger CTL granule exocytosis and perforin lysis in vitro but not in vivo. This is we show is because of decreased sensitivity of hepatocytes from infected mice to perforin and increased sensitivity to Fas and TNF-, lysis. Conclusion: Effector cells of the innate immune system are exceedingly effective in suppressing adenoviral gene expression. Perforin-independent pathways, those mediated by TNF-, and Fas are very efficient in hepatocytes from virus-infected livers. [source] ,-Latrotoxin increases spontaneous and depolarization-evoked exocytosis from pancreatic islet ,-cellsTHE JOURNAL OF PHYSIOLOGY, Issue 3 2005Amelia M. Silva ,-Latrotoxin (,-LT), a potent excitatory neurotoxin, increases spontaneous, as well as action potential-evoked, quantal release at nerve terminals and increases hormone release from excitable endocrine cells. We have investigated the effects of ,-LT on single human, mouse and canine ,-cells. In isolated and combined measurements, ,-LT, at nanomolar concentrations, induces: (i) rises in cytosolic Ca2+, into the micromolar range, that are dependent on extracellular Ca2+; (ii) large conductance non-selective cation channels; and (iii) Ca2+ -dependent insulin granule exocytosis, measured as increases in membrane capacitance and quantal release of preloaded serotonin. Furthermore, at picomolar concentrations, ,-LT potentiates depolarization-induced exocytosis often without evidence of inducing channel activity or increasing cytosolic Ca2+. These results strongly support the hypothesis that ,-LT, after binding to specific receptors, has at least two complementary modes of action on excitable cells. (i) ,-LT inserts into the plasma membrane to form Ca2+ permeable channels and promote Ca2+ entry thereby triggering Ca2+ -dependent exocytosis in unstimulated cells. (ii) At lower concentrations, where its channel forming activity is hardly evident, ,-LT augments depolarization-evoked exocytosis probably by second messenger-induced enhancement of the efficiency of the vesicle recruitment or vesicle fusion machinery. We suggest that both modes of action enhance exocytosis from a newly described highly Ca2+ -sensitive pool of insulin granules activated by global cytosolic Ca2+ concentrations in the range of ,1 ,m. [source] |