Home About us Contact | |||
Gravity Values (gravity + value)
Selected AbstractsViscoelastic displacement and gravity changes due to point magmatic intrusions in a gravitational layered solid earthGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2001José Fernández Summary We present a method for the computation of time-dependent geodetic and geophysical signatures (deformation, potential and gravity changes) due to magmatic intrusions in a layered viscoelastic,gravitational medium. This work is an extension of a deformation model previously developed to compute effects due to volcanic loading in an elastic gravitational layered media. The model assumes a planar earth geometry, useful for near field problems, and consists of welded elastic and viscoelastic layers overlying a viscoelastic half-space. Every layer can either be considered elastic or viscoelastic. The intrusion (treated as a point source) can be located at any depth, in any of the layers or in the half-space. Several examples of theoretical computations for different media are also presented. We have found that, in line with previous results obtained by other authors, introducing viscoelastic properties in all or part of the medium can extend the effects (displacements, gravity changes, etc.) considerably and therefore lower pressure increases are required to model given observed effects. The viscoelastic effects seem to depend mainly on the rheological properties of the layer (zone) where the intrusion is located, rather than on the rheology of the whole medium. We apply our model to the 1982,1984 uplift episode at Campi Flegrei, modelling simultaneously the observed vertical displacement and gravity changes. The results clearly show that for a correct interpretation of observed effects it is necessary to include the gravitational field in the anelastic theoretical models. This factor can change the value and pattern of time-dependent deformation as well as the gravity changes, explaining cases of displacement without noticeable gravity changes or vice versa, cases with uplift and incremental gravity values, and other cases. The combination of displacement and gravity changes is found to be especially effective in constraining the possible characteristics of the magmatic intrusion as well as the rheology of the medium surrounding it. [source] Variation in wood density determines spatial patterns inAmazonian forest biomassGLOBAL CHANGE BIOLOGY, Issue 5 2004Timothy R. Baker Abstract Uncertainty in biomass estimates is one of the greatest limitations to models of carbon flux in tropical forests. Previous comparisons of field-based estimates of the aboveground biomass (AGB) of trees greater than 10 cm diameter within Amazonia have been limited by the paucity of data for western Amazon forests, and the use of site-specific methods to estimate biomass from inventory data. In addition, the role of regional variation in stand-level wood specific gravity has not previously been considered. Using data from 56 mature forest plots across Amazonia, we consider the relative roles of species composition (wood specific gravity) and forest structure (basal area) in determining variation in AGB. Mean stand-level wood specific gravity, on a per stem basis, is 15.8% higher in forests in central and eastern, compared with northwestern Amazonia. This pattern is due to the higher diversity and abundance of taxa with high specific gravity values in central and eastern Amazonia, and the greater diversity and abundance of taxa with low specific gravity values in western Amazonia. For two estimates of AGB derived using different allometric equations, basal area explains 51.7% and 63.4%, and stand-level specific gravity 45.4% and 29.7%, of the total variation in AGB. The variation in specific gravity is important because it determines the regional scale, spatial pattern of AGB. When weighting by specific gravity is included, central and eastern Amazon forests have significantly higher AGB than stands in northwest or southwest Amazonia. The regional-scale pattern of species composition therefore defines a broad gradient of AGB across Amazonia. [source] Gravity variations along the Southeast Bohol Ophiolite Complex (SEBOC), Central Philippines: Implications on Ophiolite EmplacementISLAND ARC, Issue 4 2000Jenny Anne L. Barretto Abstract The basement complex of Bohol Island consists of the Southeast Bohol Ophiolite Complex (SEBOC), Cansiwang Melange and Alicia Schist. The SEBOC is a complete, but dismembered ophiolite with outcrops generally trending northeast, southwest and dipping north-west. The harzburgite units of the SEBOC are almost always observed to be thrusted onto the Cansiwang Melange, which in turn is thrusted onto the Alicia Schist. Bouguer gravity values on Bohol range from about +60 mGal in the west to +120 mGal in the east, in the region to the north-east of the SEBOC outcrops. Based on the present distribution of the SEBOC units and their thrust fault relationship with the Cansiwang Melange and Alicia Schist, it is proposed that the SEBOC was emplaced by onramping towards the south-eastward direction. However, the orientation of the Bouguer highs suggests that the thrusting direction of the ophiolite units is towards the south-west and not towards the south-east. [source] Interspecific and Inter-site Variation in Wood Specific Gravity of Tropical TreesBIOTROPICA, Issue 1 2004Article first published online: 15 MAR 200, Helene C. Muller-Landau ABSTRACT Variation in climate and soils results in inter-site differences in the assemblages of tree life history strategies within a community, which has important implications for ecosystem structure and dynamics. I investigated interspecific and inter-site variation in wood specific gravity,an easily measured indicator of tree life history strategy,in four Neotropical forests and analyzed its correlates. Mean wood specific gravity (oven-dry weight divided by fresh volume, sometimes also referred to as wood density in the literature) differed significantly among sites, varying inversely with soil fertility and independently of rainfall, seasonality, and temperature. Mean wood specific gravity values were much higher at Kilometer 41, Manaus, Brazil, where soils are extremely poor, than at Cocha Cashu, Peru, Barro Colorado Island, Panama, or La Selva, Costa Rica, where soils are better and mortality rates of trees are higher. Within sites, wood specific gravity varied widely among species. On Barro Colorado Island, among-species variation was significantly, albeit weakly, negatively correlated with sapling and tree mortality and relative growth rates. Altogether, the results suggest that the distribution of tree life history strategies in a community varies substantially among sites, with important consequences for community and ecosystem properties such as aboveground carbon stores. RESUMEN La variación climática y edáfica da lugar a diferencias entre sitios con respecto a los ensambles de las estrategias de historia de vida de los árboles de una comunidad, lo cual tiene consecuencias importantes para la estructura y la dinámica del ecosistema. Investigué la variación interespecífica y espacial en la gravedad específica de la Madera,un indicador de fácil medición de la estrategia de historia de vida de los árboles,en cuatro bosques neotropicales y analizé sus factores asociados. La gravedad especifica media de la madera (el peso seco dividido por el volumen fresco, frecuentemente llamado "densidad de la madera" en la literatura ecológica) fue significativamente diferente entre sitios, variando inversamente con la fertilidad del suelo, e independientemence de la precipitación, la estacionalidad, y la temperatura. La gravedad especifica media de la madera fue mucho más alta en Kilómetro 41, Manaus, Brasil, donde los suelos son extremadamente pobres, en comparación con Cocha Cashu, Perú, Barro Colorado, Panamá, o La Selva, Costa Rica, donde los suelos son mejores y las tasas de mortalidad de los árboles son más altas. Dentro de los sitios, la gravedad especifica de la madera varió extensamente entre especies. En Barro Colorado, la variación entre especies estuvo correlacionada negativamente, aunque sólo débilmente, con las tasas de mortalidad y de crecimiento relativo de los árboles juveniles y adultos. En conjunto, los resultados sugieren que la distribución de las estrategias de historia de vida de los árboles en una comunidad varía sustancialmente entre sitios, con consecuencias importantes para características comunitarias y del ecosistema tales como las reservas de carbono. [source] |