Gravity Force (gravity + force)

Distribution by Scientific Domains


Selected Abstracts


Simulated microgravity activates MAPK pathways in fibroblasts cultured on microgrooved surface topography

CYTOSKELETON, Issue 2 2008
W. A. Loesberg
Abstract This study evaluated in vitro the differences in morphological behaviour between fibroblast cultured on smooth and microgrooved substrata (groove depth: 0.5 ,m, width: 1 ,m), which were subjected to simulated microgravity. The aim of the study was to clarify which of these parameters was more dominant to determine cell behaviour. Morphological characteristics were investigated using scanning electron microscopy and fluorescence microscopy in order to obtain qualitative information on cell alignment. Expression of collagen type I, and ,1-, ,1-, ,3-integrin were investigated by QPCR. Finally, immunoblotting was applied to visualise MAPK signalling pathways. Microscopy and image analysis showed that the fibroblasts aligned along the groove direction on all textured surfaces. On the smooth substrata, cells had spread out in a random fashion. The alignment of cells cultured on grooved surfaces under simulated microgravity, after 48 h of culturing appeared similar to those cultured at 1g, although cell shape was different. Analysis of variance proved that all main parameters: topography, gravity force, and time were significant. In addition, gene levels were reduced by simulated microgravity particularly those of ,3-integrin and collagen, however alpha-1 and beta-1 integrin levels were up-regulated. ERK1/2 was reduced in RPM, however, JNK/SAPK and p38 remained active. The members of the small GTPases family were stimulated under microgravity, particularly RhoA and Cdc42. The results are in agreement that application of microgravity to fibroblasts promotes a change in their morphological appearance and their expression of cell-substratum proteins through the MAPK intracellular signalling pathways. Cell Motil. Cytoskeleton 2007. © 2007 Wiley-Liss, Inc. [source]


The effect of combined simulated microgravity and microgrooved surface topography on fibroblasts

CYTOSKELETON, Issue 3 2007
W. A. Loesberg
Abstract This study evaluated in vitro the differences in morphological behaviour between fibroblast cultured on smooth and microgrooved substrata (groove depth: 0.5 ,m, width: 1, 2, 5, and 10 ,m), which were subjected to simulated microgravity. The aim of the study was to clarify which of these parameters was more dominant to determine cell behaviour. Morphological characteristics were investigated using scanning electron microscopy and fluorescence microscopy in order to obtain qualitative information on cell alignment and area. Confocal laser scanning microscopy visualised distribution of actin filaments and focal adhesion points. Finally, expression of collagen type I, fibronectin, and ,1- and ,1-integrin were investigated by PCR. Microscopy and image analysis showed that the fibroblasts aligned along the groove direction on all textured surfaces. On the smooth substrata, cells had spread out in a random fashion. The alignment of cells cultured on grooved surfaces decreased under simulated microgravity, especially after 24 h of culturing. Cell surface area on grooved substrata were significantly smaller than on smooth substrata, but simulated microgravity on the grooved groups resulted in an enlargement of cell area. ANOVA was performed on all main parameters: topography, gravity force, and time. In this analysis, all parameters proved significant. In addition, gene levels were reduced by microgravity particularly those of ,1-integrin and fibronectin. From our data it is concluded that the fibroblasts primarily adjust their shape according to morphological environmental cues like substratum surface whilst a secondary, but significant, role is played by microgravity conditions. Cell Motil. Cytoskeleton 2007. © 2007 Wiley-Liss, Inc. [source]


The effect of combined hypergravity and microgrooved surface topography on the behaviour of fibroblasts

CYTOSKELETON, Issue 7 2006
W. A. Loesberg
Abstract This study evaluated in vitro the differences in morphological behaviour between fibroblast cultured on smooth and microgrooved substrata (groove depth: 1 ,m, width: 1, 2, 5, 10 ,m), which undergo artificial hypergravity by centrifugation (10, 24 and 50 g; or 1 g control). The aim of the study was to clarify which of these parameters was more important to determine cell behaviour. Morphological characteristics were investigated using scanning electron microscopy and fluorescence microscopy in order to obtain qualitative information on cell spreading and alignment. Confocal laser scanning microscopy visualised distribution of actin filaments and vinculin anchoring points through immunostaining. Finally, expression of collagen type I, fibronectin, and ,1 - and ,1 -integrin were investigated by PCR. Microscopy and image analysis showed that the fibroblasts aligned along the groove direction on all textured surfaces. On the smooth substrata (control), cells spread out in a random fashion. The alignment of cells cultured on grooved surfaces increased with higher g-forces until a peak value at 25 g. An ANOVA was performed on the data, for all main parameters: topography, gravity force, and time. In this analysis, all parameters proved significant. In addition, most gene levels were reduced by hypergravity. Still, collagen type 1 and fibronectin are seemingly unaffected by time or force. From our data it is concluded that the fibroblasts primarily adjust their shape according to morphological environmental cues like substratum surface whilst a secondary, but significant, role is played by hypergravity forces. Cell Motil. Cytoskeleton 2006. © 2006 Wiley-Liss, Inc. [source]


Numerical simulations of a transient injection flow at low Mach number regime

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 5 2008
A. Beccantini
Abstract In this paper, a transient injection flow at low Mach number regime is investigated. Three different methods are used and analyzed. Two of them are based on asymptotic models of the Navier,Stokes equations valid for small Mach numbers, whereas the other is based on the full compressible Navier,Stokes equations, with particular care given to the discretization at low Mach numbers. Numerical solutions are computed both with or without the gravity force. Finally, the performance of the solvers in terms of CPU-time consumption is investigated, and the sensitivity of the solution to some parameters, which affect CPU time is also performed. Copyright © 2008 John Wiley & Sons, Ltd. [source]


A natural redundancy-resolution for 3-D multi-joint reaching under the gravity effect

JOURNAL OF FIELD ROBOTICS (FORMERLY JOURNAL OF ROBOTIC SYSTEMS), Issue 11 2005
Masahiro Sekimoto
A simple control method for 3-dimensional multi-joint reaching movements under redundancy of degrees of freedom (DOF) is proposed, which need neither introduce any performance index to solve inverse kinematics uniquely nor calculate pseudo-inverse of the Jacobian matrix of task coordinates with respect to joint coordinates. The proposed control signal is composed of linear superposition of three terms: (1) angular-velocity feedback for damping shaping, (2) task-space position error feedback with a single stiffness parameter, and (3) compensation for gravity force on the basis of estimates for uncertain parameters of the potential energy without calculation any inverse joint position to the target in task space. Through a theoretical analysis of the closed-loop dynamics and a variety of computer simulations by using a whole arm model with five DOFs, the importance of synergistic adjustments of damping factors as well as its relation to selection of the stiffness parameter is pointed out. It is shown that if damping factors are chosen synergistically corresponding to the inertia matrix at the initial time and the stiffness parameter then the endpoint converges asymptotically to the target position and reaches it smoothly without incurring any self-motion. © 2005 Wiley Periodicals, Inc. [source]