Home About us Contact | |||
Gram-positive
Terms modified by Gram-positive Selected AbstractsCritical aspects of analysis of Micrococcus luteus, Neisseria cinerea, and Pseudomonas fluorescens by means of capillary electrophoresisELECTROPHORESIS, Issue 18-19 2004Verena Hoerr Abstract Within the frame of our study we investigated Microccocus luteus, Neisseria cinerea, and Pseudomonas fluorescens by means of capillary zone electrophoresis (CZE). They form chains and clusters on a different scale, which can be reflected in the electropherograms. A low buffer concentration of Tris-borate and Na2 EDTA containing a polymeric matrix of 0.0125% poly(ethylene) oxide (PEO) was used. Key factors were the standardization and optimization of CE conditions, buffer solution, and pretreatment of bacterial samples, which are not transferable to different bacterial strains, in general. The different compositions of the cell wall of on the one hand Gram-positive (M. luteus) and Gram-negative (N. cinerea) cocci and on the other hand Gram-negative, rod-shaped bacteria (P.fluorescens), are probably responsible for the different pretreatment conditions. [source] Dominant sugar utilizers in sediment of Lake Constance depend on syntrophic cooperation with methanogenic partner organismsENVIRONMENTAL MICROBIOLOGY, Issue 6 2008Nicolai Müller Summary Six strains of novel bacteria were isolated from profundal sediment of Lake Constance, a deep freshwater lake in Germany, by direct dilution of the sediment in mineral agar medium containing a background lawn of the hydrogen-scavenging Methanospirillum hungatei as a syntrophic partner. The numbers of colony-forming units obtained after incubation for more than 2 months were in the same range as those of total bacterial counts determined by DAPI staining (up to 108 cells per millilitre) suggesting that these organisms were dominant members of the community. Identical dilution series in the absence of methanogenic partners yielded numbers that were lower by two to three orders of magnitude. The dominant bacteria were isolated in defined co-culture with M. hungatei, and were further characterized. Growth was slow, with doubling times of 22,28 h at 28°C. Cells were small, 0.5 × 5 ,m in size, Gram-positive, and formed terminal oval spores. At 20°C, glucose was fermented by the co-culture strain BoGlc83 nearly stoichiometrically to 2 mol of acetate and 1 mol of methane plus CO2. At higher temperatures, also lactate and traces of succinate were formed. Anaerobic growth depended strictly on the presence of a hydrogen-scavenging partner organism and was inhibited by bromoethane sulfonate, which together indicate the need for a syntrophic partnership for this process. Strain BoGlc83 grew also aerobically in the absence of a partner organism. All enzymes involved in ATP formation via glycolysis and acetyl CoA were found, most of them at activities equivalent to the physiological substrate turnover rate. This new type of sugar-fermenting bacterium appears be the predominant sugar utilizer in this environment. The results show that syntrophic relationships can play an important role also for the utilization of substrates which otherwise can be degraded in pure culture. [source] Molecular characterization of sulfate-reducing bacteria in a New England salt marshENVIRONMENTAL MICROBIOLOGY, Issue 8 2005Michele Bahr Summary Sulfate reduction, mediated by sulfate-reducing bacteria (SRB), is the dominant remineralization pathway in sediments of New England salt marshes. High sulfate reduction rates are associated with the rhizosphere of Spartina alterniflora when plants elongate aboveground. The growth process concurrently produces significant amounts of new rhizome material belowground and the plants leak dissolved organic compounds. This study investigated the diversity of SRB in a salt marsh over an annual growth cycle of S. alterniflora by exploring the diversity of a functional gene, dissimilatory sulfite reductase (dsrAB). Because the dsrAB gene is a key gene in the anaerobic sulfate-respiration pathway, it allows the identification of microorganisms responsible for sulfate reduction. Conserved dsrAB primers in polymerase chain reaction (PCR) generated full-length dsrAB amplicons for cloning and DNA sequence analysis. Nearly 80% of 380 clone sequences were similar to genes from Desulfosarcina and Desulfobacterium species within Desulfobacteraceae. This reinforces the hypothesis that complete oxidizers with high substrate versatility dominate the marsh. However, the phylotypes formed several clades that were distinct from cultured representatives, indicating a greater diversity of SRB than previously appreciated. Several dsrAB sequences were related to homologues from Gram-positive, thermophilic and non-thermophilic Desulfotomaculum species. One dsrAB lineage formed a sister group to cultured members of the delta-proteobacterial group Syntrophobacteraceae. A deeply branching dsrAB lineage was not affiliated with genes from any cultured SRB. The sequence data from this study will allow for the design of probes or primers that can quantitatively assess the diverse range of sulfate reducers present in the environment. [source] Reproduction and metabolism at , 10°C of bacteria isolated from Siberian permafrostENVIRONMENTAL MICROBIOLOGY, Issue 4 2003Corien Bakermans Summary We report the isolation and properties of several species of bacteria from Siberian permafrost. Half of the isolates were spore-forming bacteria unable to grow or metabolize at subzero temperatures. Other Gram-positive isolates metabolized, but never exhibited any growth at , 10°C. One Gram-negative isolate metabolized and grew at , 10°C, with a measured doubling time of 39 days. Metabolic studies of several isolates suggested that as temperature decreased below + 4°C, the partitioning of energy changes with much more energy being used for cell maintenance as the temperature decreases. In addition, cells grown at , 10°C exhibited major morphological changes at the ultrastructural level. [source] Identification of a cowpea ,-thionin with bactericidal activityFEBS JOURNAL, Issue 15 2006Octávio L. Franco Antimicrobial peptides are an abundant group of proteinaceous compounds widely produced in the plant kingdom. Among them, the ,-thionin family, also known as plant defensins, represents one typical family and comprises low molecular mass cysteine-rich proteins, usually cationic and distributed in different plant tissues. Here, we report the purification and characterization of a novel ,-thionin from cowpea seeds (Vigna unguiculata), named Cp-thionin II, with bactericidal activity against Gram-positive and Gram-negative bacteria. Once the primary structure was elucidated, molecular modelling experiments were used to investigate the multimerization and mechanism of action of plant ,-thionins. Furthermore, Cp-thionin II was also localized in different tissues in cowpea seedlings during germination in contrasting conditions, to better understand the plant protection processes. The use of plant defensins in the construction of transgenic plants and also in the production of novel drugs with activity against human pathogens is discussed. [source] Molecular analysis of bacterial populations in the ileum of broiler chickens and comparison with bacteria in the cecumFEMS MICROBIOLOGY ECOLOGY, Issue 3 2002Jianhua Gong Abstract Bacterial populations in the ileum of broiler chickens were analyzed by molecular analysis of 16S rRNA genes and compared to those in the cecum. Bacteria found in the ileal mucosa were mainly Gram-positive with low G+C content. There were 15 molecular species among 51 cloned sequences. More than 70% of the cloned sequences were related to lactobacilli and Enterococcus cecorum. Two sequences had 95% or less homology to existing database sequences. Terminal restriction fragment length polymorphism (T-RFLP) analysis revealed differences among bacterial populations present in the mucosa and lumen of the ileum. Comparative studies by T-RFLP and sequence analyses of 16S rRNA genes indicated a less diverse bacterial population in the ileum (mucosa and lumen) than in the cecum. Lactobacilli, E. cecorum, and butyrate-producing bacteria related (including both identified and unidentified species) sequences were the three major groups detected in ilea and ceca. Although butyrate-producing bacteria may have good potential in the development of novel probiotics for poultry, verifying the presence of the bacteria in the chicken gut is required to warrant further investigation. [source] High prokaryote diversity and analysis of community structure in mobile mud deposits off French Guiana: identification of two new bacterial candidate divisionsFEMS MICROBIOLOGY ECOLOGY, Issue 3 2001Vanessa M. Madrid Abstract Bacterial and archaeal community compositions in highly mobile nearshore muds typical of the Guiana coastline of South America were examined by sequence analysis of a 16S rDNA clone library. DNA was extracted from a subsurface sediment layer (10,30 cm) collected at a subtidal (,1 m deep) mud wave site between Kourou and Sinnamary, French Guiana. Analysis of 96 non-chimeric sequences showed the majority to be bacteria (98%), that diversity was high with 64 unique sequences, and that proteobacteria were dominant (46%). Two crenarchaeota sequences were found (2%). Bacterial sequences belonged to the Cytophaga-Flexibacter-Bacteroides (18%), Actinobacteria (11.5%), Planctomycetes (6.3%), Cyanobacteria (3.2%), low-GC Gram-positive (1%), ,, , and , subdivisions of Proteobacteria (27%, 16%, and 9%, respectively). Additional bacterial sequences belonged to the candidate division TM6 (1%) and to two newly proposed candidate divisions: KS-A (2%) and KS-B (3%). A sizeable fraction (22%) of sequences from the Kourou,Sinnamary library are normally found in water column populations, reflecting frequent entrainment of suspended debris into physically reworked underlying sediments. Dominant sequences (56%) were related to Gelidibacter algens (Cytophaga-Flexibacter-Bacteroides group), Actinobacteria, Sulfitobacter and Ruegeria spp. (,-proteobacteria), all of which are chemoorganotrophs, consistent with abundant labile organic carbon. The presence of sequences from potential sulfate reducers and sulfide oxidizers suggests the likelihood of sulfur cycling in these sediments, despite the dominance of suboxic (iron-reducing), non-sulfidic diagenetic properties. Rarefaction analysis indicated that bacterial diversity in the French Guiana library is not only unusually high in comparison with other marine sedimentary environments, but among the most diverse of all environments reported to date. [source] Isolation of a Carnobacterium maltaromaticum- like bacterium from systemically infected lake whitefish (Coregonus clupeaformis)FEMS MICROBIOLOGY LETTERS, Issue 1 2008Thomas P. Loch Abstract Herein we report on the first isolation of a Carnobacterium maltaromaticum -like bacterium from kidneys and swim bladders of lake whitefish (Coregonus clupeaformis) caught from Lakes Michigan and Huron, Michigan. Isolates were Gram-positive, nonmotile, facultatively anaerobic, asporogenous rods that did not produce catalase, cytochrome oxidase, or H2S, and did not grow on acetate agar. Except for carbohydrate fermentation, many phenotypic characteristics of lake whitefish isolates coincided with those of C. maltaromaticum, the causative agent of pseudokidney disease. Partial sequencing of 16S and 23S rRNA genes, as well as the piscicolin 126 precursor gene, yielded 97% and 98% nucleotide matches with C. maltaromaticum, respectively (accession numbers EU546836 and EU546837; EU643471). Phylogenetic analyses showed that lake whitefish isolates of this study are highly related, yet not fully identical to C. maltaromaticum. The presence of the C. maltaromaticum -like bacterium was associated with splenomegaly, renal and splenic congestion, and thickening of the swim bladder wall with accumulation of a mucoid exudate. Examination of stained tissue sections revealed renal and splenic congestion, vacuolation and bile stasis within the liver, and hyperplasia within the epithelial lining of the swim bladder. The concurrent presence of pathological changes and the C. maltaromaticum -like bacteria suggests that this bacterium is pathogenic to lake whitefish. [source] Isolation and characterization of a novel Bacillus sp., strain YAS1, capable of transforming tyrosol under hypersaline conditionsFEMS MICROBIOLOGY LETTERS, Issue 1 2005Slim Abdelkafi Abstract A moderately halotolerant, Gram-positive, aerobic, motile, spore-forming bacterium, designated as strain YAS1, was isolated from an olive-brine fermentation rich in aromatic compounds, after enrichment on tyrosol. Strain YAS1 grew between 25 and 45 °C and optimally at 37 °C. It grew in the presence of 0,15% (v/w) NaCl, with an optimum of 3,6% (v/w) NaCl. The DNA G + C content was found to be 49.9 mol%. Phylogenetic analysis of the 16S rRNA gene revealed that this isolate was a member of the genus Bacillus. The newly isolated strain YAS1 represents the first moderately halotolerant bacterium transforming tyrosol to p -hydroxyphenylacetic acid (PHPA) in the presence of yeast extract. [source] Phylogenetic analysis of condensation domains in the nonribosomal peptide synthetasesFEMS MICROBIOLOGY LETTERS, Issue 1 2005Niran Roongsawang Abstract Condensation (C) domains in the nonribosomal peptide synthetases are capable of catalyzing peptide bond formation between two consecutively bound various amino acids. C-domains coincide in frequency with the number of peptide bonds in the product peptide. In this study, a phylogenetic approach was used to investigate structural diversity of bacterial C-domains. Phylogenetic trees show that the C-domains are clustered into three functional groups according to the types of substrate donor molecules. They are l -peptidyl donors, d -peptidyl donors, and N -acyl donors. The fact that C-domain structure is not subject to optical configuration of amino acid acceptor molecules supports an idea that the conversion from l to d -form of incorporating amino acid acceptor occurs during or after peptide bond formation. l -peptidyl donors and d -peptidyl donors are suggested to separate before separating the lineage of Gram-positive and Gram-negative bacteria in the evolution process. [source] Indole as an intercellular signal in microbial communitiesFEMS MICROBIOLOGY REVIEWS, Issue 4 2010Jin-Hyung Lee Abstract Bacteria can utilize signal molecules to coordinate their behavior to survive in dynamic multispecies communities. Indole is widespread in the natural environment, as a variety of both Gram-positive and Gram-negative bacteria (to date, 85 species) produce large quantities of indole. Although it has been known for over 100 years that many bacteria produce indole, the real biological roles of this molecule are only now beginning to be unveiled. As an intercellular signal molecule, indole controls diverse aspects of bacterial physiology, such as spore formation, plasmid stability, drug resistance, biofilm formation, and virulence in indole-producing bacteria. In contrast, many non-indole-producing bacteria, plants and animals produce diverse oxygenases which may interfere with indole signaling. It appears indole plays an important role in bacterial physiology, ecological balance, and possibly human health. Here we discuss our current knowledge and perspectives on indole signaling. [source] Chemical constituents and antimicrobial activities of the essential oil of Acroptilon repens (L.) DCFLAVOUR AND FRAGRANCE JOURNAL, Issue 2 2006Hassan Norouzi-Arasi Abstract The volatile oil from the aerial parts of Acroptilon repens (L.) DC. (Russian knapweed) growing wild in Iran was investigated by GC and GC,MS. Twenty-two components, representing 84.0% of the oil, were identified. The main constituents of the oil were caryophyllene oxide (36.6%), , -copaene (15.6%), , -caryophylene (10.0%) and , -copaene-4- , -ol (5.0%). In addition, the oil was assayed against six Gram-positive and Gram-negative bacteria by measuring the growth inhibitory zone. The oil of A. repens inhibited the growth of Gram-positive bacteria. Staphylococcus saprophyticus and Staphylococcus epidermidis showed strong inhibition zones, while Staphylococcus aureus showed a lower inhibition. The Gram-negative bacteria were insensitive to the oil. Copyright © 2005 John Wiley & Sons, Ltd. [source] Composition and antimicrobial activity of the essential oils of Helichrysum kraussii Sch.FLAVOUR AND FRAGRANCE JOURNAL, Issue 1 2003H. rugulosum Less. from South Africa Abstract The chemical compositions of the essential oils obtained from the aerial parts of Helichrysum kraussii and H. rugulosum were analysed by GC and GC,MS. From the 39 identified constituents, representing 85.1% and 92.9% of the two oils, respectively, ,-caryophyllene (30.7%, 12.6%), ,-pinene (12.1%,,), ,-caryophyllene oxide (,, 8.8%), cis -,-bisabolene (,, 22.7%), ,-bisabolene (,, 4.7%) and ,-humulene (9.8%, ,) were found to be the main components. Furthermore, the oils were tested against six Gram-positive or -negative bacteria and three pathogenic fungi. It was found that oils from both plants, and especially that of H. rugulosum, exhibited interesting antibacterial activity. Copyright © 2002 John Wiley & Sons, Ltd. [source] The impact of metabolic state on Cd adsorption onto bacterial cellsGEOBIOLOGY, Issue 3 2007K. J. JOHNSON ABSTRACT This study examines the effect of bacterial metabolism on the adsorption of Cd onto Gram-positive and Gram-negative bacterial cells. Metabolically active Gram-positive cells adsorbed significantly less Cd than non-metabolizing cells. Gram-negative cells, however, showed no systematic difference in Cd adsorption between metabolizing and non-metabolizing cells. The effect of metabolism on Cd adsorption to Gram-positive cells was likely due to an influx of protons in and around the cell wall from the metabolic proton motive force, promoting competition between Cd and protons for adsorption sites on the cell wall. The relative lack of a metabolic effect on Cd adsorption onto Gram-negative compared to Gram-positive cells suggests that Cd binding in Gram-negative cells is focused in a region of the cell wall that is not reached, or is unaffected by this proton flux. Thermodynamic modeling was used to estimate that proton pumping causes the pH in the cell wall of metabolizing Gram-positive bacteria to decrease from the bulk solution value of 7.0 to approximately 5.7. [source] Antimicrobial Gallium-Doped Phosphate-Based Glasses,ADVANCED FUNCTIONAL MATERIALS, Issue 5 2008Sabeel P. Valappil Abstract Novel quaternary gallium-doped phosphate-based glasses (1, 3, and 5 mol % Ga2O3) were synthesized using a conventional melt quenching technique. The bactericidal activities of the glasses were tested against both Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Clostridium difficile) bacteria. Results of the solubility and ion release studies showed that these glass systems are unique for controlled delivery of Ga3+. 71Ga NMR measurements showed that the gallium is mostly octahedrally coordinated by oxygen atoms, whilst FTIR spectroscopy provided evidence for the presence of a small proportion of tetrahedral gallium in the samples with the highest gallium content. FTIR and Raman spectra also afford an insight into the correlation between the structure and the observed dissolution behavior via an understanding of the atomic-scale network bonding characteristics. The results confirmed that the net bactericidal effect was due to Ga3+, and a concentration as low as 1 mol % Ga2O3 was sufficient to mount a potent antibacterial effect. The dearth of new antibiotics in development makes Ga3+ a potentially promising new therapeutic agent for pathogenic bacteria including MRSA and C. difficile. [source] Preparation, antimicrobial activity, and toxicity of 2-amino-4-arylthiazole derivativesHETEROATOM CHEMISTRY, Issue 4 2006Pedro Morales-Bonilla Seven 2-amino-4-aryl-1,3-thiazoles (1a,g) and their corresponding 2-aminoacetyl (2a,g) and 2-aminoacetyl-5-bromo (3a,g) derivatives were synthesized and tested in vitro against 11 reference strains, three Gram-positive and four Gram-negative bacteria, two yeasts, and two moulds. Toxicity of the compounds was also evaluated using the brine shrimp test. Compounds 1a, 1b, 1e,g, and 3b showed moderate antimicrobial activity at different concentrations. The results indicated that acetylation of the amino group and bromination at position 5 of the thiazole moiety cause lost of activity. Compounds 1a, 1e, and 1f showed toxicity to brine shrimp nauplii below 10 ppm. Most other compounds showed moderate toxicity, LD50 above 100 ppm. Structures of all compounds were confirmed by NMR and MS data. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:254,260, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20182 [source] Histamine induces Toll-like receptor 2 and 4 expression in endothelial cells and enhances sensitivity to Gram-positive and Gram-negative bacterial cell wall componentsIMMUNOLOGY, Issue 2 2004Jaya Talreja Summary Histamine is a major inflammatory molecule released from the mast cell, and is known to activate endothelial cells. However, its ability to modulate endothelial responses to bacterial products has not been evaluated. In this study we determined the ability of histamine to modulate inflammatory responses of endothelial cells to Gram-negative and Gram-positive bacterial cell wall components and assessed the role of Toll-like receptors (TLR) 2 and 4 in the co-operation between histamine and bacterial pathogens. Human umbilical vein endothelial cells (HUVEC) were incubated with lipopolysaccharide (LPS), lipoteichoic acid (LTA), or peptidoglycan (PGN) in the presence or absence of histamine, and the expression and release of interleukin-6 (IL-6), and NF-,B translocation were determined. The effect of histamine on the expression of mRNA and proteins for TLR2 and TLR4 was also evaluated. Incubation of HUVEC with LPS, LTA and PGN resulted in marked enhancement of IL-6 mRNA expression and IL-6 secretion. Histamine alone markedly enhanced IL-6 mRNA expression in HUVEC, but it did not stimulate proportional IL-6 release. When HUVEC were incubated with LPS, LTA, or PGN in the presence of histamine marked amplification of both IL-6 production and mRNA expression was noted. HUVEC constitutively expressed TLR2 and TLR4 mRNA and proteins, and these were further enhanced by histamine. The expression of mRNAs encoding MD-2 and MyD88, the accessory molecules associated with TLR signalling, were unchanged by histamine treatment. These results demonstrate that histamine up-regulates the expression of TLR2 and TLR4 and amplifies endothelial cell inflammatory responses to Gram-negative and Gram-positive bacterial components. [source] Antimicrobial Activity of Silver Nanocrystals Encapsulated in Mesoporous Silica NanoparticlesADVANCED MATERIALS, Issue 17 2009Monty Liong Silver nanocrystals encapsulated in mesoporous silica nanoparticles are prepared by coating hydrophobic silver nanocrystals with amphiphilic surfactants and growing mesostructured silica around the materials. The nanoparticles can be used as antimicrobial agents for both Gram-positive and -negative bacteria through oxidative dissolution of the silver nanocrystals. The surface characteristics of the silica exterior affect the binding to the bacteria and the cytotoxicity. [source] Investigation of critical inter-related factors affecting the efficacy of pulsed light for inactivating clinically relevant bacterial pathogensJOURNAL OF APPLIED MICROBIOLOGY, Issue 5 2010H.P. Farrell Abstract Aims:, To investigate critical electrical and biological factors governing the efficacy of pulsed light (PL) for the in vitro inactivation of bacteria isolated from the clinical environment. Development of this alternative PL decontamination approach is timely, as the incidence of health care,related infections remains unacceptably high. Methods and Results:, Predetermined cell numbers of clinically relevant Gram-positive and Gram-negative bacteria were inoculated separately on agar plates and were flashed with ,60 pulses of broad-spectrum light under varying operating conditions, and their inactivation measured. Significant differences in inactivation largely occurred depending on the level of the applied lamp discharge energy (range 3·2,20 J per pulse), the amount of pulsing applied (range 0,60 pulses) and the distance between light source and treatment surface (range 8,20 cm) used. Greater decontamination levels were achieved using a combination of higher lamp discharge energies, increased number of pulses and shorter distances between treatment surface and the xenon light source. Levels of microbial sensitivity also varied depending on the population type, size and age of cultures treated. Production of pigment pyocynanin and alginate slime in mucoid strains of Pseudomonas aeruginosa afforded some protection against lethal action of PL; however, this was evident only by using a combination of reduced amount of pulsing at the lower lamp discharge energies tested. A clear pattern was observed where Gram-positive bacterial pathogens were more resistant to cidal effects of PL compared to Gram negatives. While negligible photoreactivation of PL-treated bacterial strains occurred after full pulsing regimes at the different lamp discharge energies tested, some repair was evident when using a combination of reduced pulsing at the lower lamp discharge energies. Strains harbouring genes for multiple resistances to antibiotics were not significantly more resistant to PL treatments. Slight temperature rises (,4·2°C) were measured on agar surfaces after extended pulsing at higher lamp discharge energies. Presence of organic matter on treatment surface did not significantly affect PL decontamination efficacy, nor did growth of PL-treated bacteria on selective agar diminish survival compared to similarly treated bacteria inoculated and enumerated on nonselective agar plates. Conclusions:, Critical inter-related factors affecting the effective and repeatable in vitro decontamination performance of PL were identified during this study that will aid further development of this athermal process technology for applications in health care and in industry. Very rapid reductions (c. 7 log10 CFU cm,2 within ,10 pulses) occurred using discharge energy of 20 J for all tested clinically relevant bacteria under study when treated at 8 cm distance from xenon light source. While no resistant flora is expected to develop for treatment of microbial pathogens on two-dimensional surfaces, careful consideration of scale up factors such as design and operational usage of this PL technique will be required to assure operator safety. Significance and Impact of the Study:, Findings and conclusions derived from this study will enable further development and optimization of this decontamination technique in health care and in food preparation settings, and will advance the field of nonthermal processing technologies. [source] Occurrence of sublethal injury after pulsed electric fields depending on the micro-organism, the treatment medium ph and the intensity of the treatment investigatedJOURNAL OF APPLIED MICROBIOLOGY, Issue 1 2005D. García Abstract Aims:, The objective was to investigate the occurrence of sublethal injury after pulsed electric field (PEF) depending on the treatment time, the electric field strength and the pH of the treatment media in two Gram-positive (Bacillus subtilis ssp. niger, Listeria monocytogenes) and six Gram-negative (Escherichia coli, Escherichia coli O157:H7, Pseudomonas aeruginosa, Salmonella serotype Senftenberg 775W, Salmonella serotype Typhimurium, Yersinia enterocolitica) bacterial strains. Methods and Results:, A characteristic behaviour was observed for the Gram-positive and Gram-negative bacteria studied. Whereas Gram-positive bacteria showed a higher PEF resistance at pH 7·0, the Gram-negative were more resistant at pH 4·0. In these conditions, in which bacteria showed their maximum resistance, a large proportion of sublethally injured cells were detected. In most cases, the longer the treatment time and the higher the electric field applied, the greater the proportion of sublethally injured cells that were detected. No sublethal injury was detected when Gram-positive bacteria were treated at pH 4·0 and Gram-negative at pH 7·0. Conclusions:, Sublethal injury was detected after PEF so, bacterial inactivation by PEF is not an ,all or nothing' event. Significance and Impact of the Study:, This work could be useful for improving food preservation by PEF. [source] Premature Salmonella Typhimurium growth inhibition in competition with other Gram-negative organisms is redox potential regulated via RpoS inductionJOURNAL OF APPLIED MICROBIOLOGY, Issue 5 2004E. Komitopoulou Abstract Aims:, To identify the role of oxidation,reduction (redox) potential in the premature growth inhibition and RpoS induction in Salmonella serotype Typhimurium in competitive growth experiments. Methods and Results:, Oxidation,reduction potential was measured throughout the growth of a minority population of Salm. Typhimurium in mixed cultures with other Gram-negative and Gram-positive organisms. A lux -based reporter was also used to evaluate RpoS activity in Salm. Typhimurium in competitor studies. In a mixed culture, the multiplication of a minority population of Salm. Typhimurium was inhibited when competing Gram-negative organisms entered the stationary phase. This was not seen when the competing flora was Gram-positive. The change in redox potential during growth in mixed cultures was closely linked to the inhibition of Salm. Typhimurium growth by Gram-negative competitors. An artificially induced drop in redox potential earlier during growth in mixed cultures with Gram-negative organisms reduced the time to RpoS induction in Salm. Typhimurium and thus inhibited its multiplication prematurely. In contrast, RpoS induction and growth inhibition were prevented under high redox potential conditions. Conclusions:, This work shows that the inhibitory activity of competitive organisms can be mediated through their effect on redox potential-regulated RpoS induction. Significance and Impact of the Study:, Redox potential is shown to be an important determinant of Salm. Typhimurium growth, an observation with practical implications both for its control and detection. [source] Activity and mechanisms of action of selected biocidal agents on Gram-positive and -negative bacteriaJOURNAL OF APPLIED MICROBIOLOGY, Issue 2 2003S.E. Walsh Abstract Aims: This study investigates the antimicrobial activity and mode of action of two natural products, eugenol and thymol, a commonly utilized biostatic agent, triclocarban (TCC), and two surfactants, didecyldimethylammonium chloride (DDDMAC) and C10,C16 alkyldimethyl amine N -oxides (ADMAO). Methods and Results: Methods used included: determination of minimum inhibitory concentrations (MICs), lethal effect studies with suspension tests and the investigation of sub-MIC concentrations on growth of E. coli, Staph. aureus and Ps. aeruginosa using a Bioscreen microbiological analyser. Leakage of intracellular constituents and the effects of potentiating agents were also investigated. Only DDDMAC was bactericidal against all of the organisms tested. Eugenol, thymol and ADMAO showed bacteriostatic and bactericidal activity, but not against Ps. aeruginosa. TCC was only bacteristatic against Staph. aureus, but like the other agents, it did affect the growth of the other organisms in the Bioscreen experiments. All of the antimicrobial agents tested were potentiated by the permeabilizers to some extent and leakage of potassium was seen with all of the agents except TCC. Conclusions: DDDMAC was bactericidal against all organisms tested and all compounds had some bacteriostatic action. Low level static effects on bacterial growth were seen with sub-MIC concentrations. Membrane damage may account for at least part of the mode of action of thymol, eugenol, DDDMAC and ADMAO. Significance and Impact of the Study: The ingredients evaluated demonstrated a range of bactericidal and bacteriostatic properties against the Gram-negative and -positive organisms evaluated and the membrane (leakage of intracellular components) was implicated in the mode of action for most (except TCC). Sub-MIC levels of all ingredients did induce subtle effects on the organisms which impacted bacterial growth, even for those which had no true inhibitory effects. [source] Differential cytokine expression by human dendritic cells in response to different Porphyromonas gingivalis capsular serotypesJOURNAL OF CLINICAL PERIODONTOLOGY, Issue 10 2009Rolando Vernal Abstract Aim: Capsular polysaccharides play an important role in the virulence of Gram-positive and Gram-negative bacteria. In Porphyromonas gingivalis, six serotypes have been described based on capsular antigenicity and its pathogenicity has been correlated both in vitro and in animal models. This study aimed to investigate the differential response of human dendritic cells (DCs) when stimulated with different P. gingivalis capsular serotypes. Materials and Methods: Using different multiplicity of infection (MOI) of the encapsulated strains K1,K6 and the non-encapsulated K, strain of P. gingivalis, the mRNA expression levels for interleukin (IL)-1,, IL-2, IL-5, IL-6, IL-10, IL-12, IL-13, interferon (IFN)- ,, tumour necrosis factor (TNF)- ,, and TNF- , in stimulated DCs were quantified by real-time reverse transcription-polymerase chain reaction. Results: All P. gingivalis capsular serotypes induced a T-helper type 1 (Th1) pattern of cytokine expression. K1- and K2-stimulated DCs expressed higher levels of IL-1,, IL-6, IL-12p35, IL-12p40, and IFN- , and at lower MOI than DCs stimulated with the other strains. Conclusions: These results demonstrate a differential potential of P. gingivalis capsular serotypes to induce DC responses and a higher capacity of strains K1 W83 and K2 HG184 than other K serotypes to trigger cytokine expression. [source] Dental plaque: biological significance of a biofilm and community life-styleJOURNAL OF CLINICAL PERIODONTOLOGY, Issue 2005P. D. Marsh Abstract Background: Most microorganisms in nature attach to surfaces and form matrix-embedded biofilms. Biofilms are highly structured and spatially organized, and are often composed of consortia of interacting microorganisms, termed microbial communities, the properties of which are more than the sum of the component species. Microbial gene expression alters markedly in biofilms; organisms communicate by gene transfer and by secretion of diffusible signalling molecules. Cells in biofilms are less susceptible to antimicrobial agents. Aim and Materials & Methods: To comprehensively review the literature to determine whether dental plaque displays properties consistent with those of a typical biofilm and microbial community. Results: Novel microscopic and molecular techniques have demonstrated that plaque has a structured architecture with an extracellular matrix, and a diverse composition (around 50% of cells are unculturable). The constituent species communicate by gene transfer, by secreted peptides (Gram-positive bacteria) and autoinducer-2 (Gram-positive and Gram-negative bacteria). These organisms are functionally organized for increased metabolic efficiency, greater resistance to stress and for enhanced virulence. Plaque formation has direct and indirect effects on gene expression. Conclusion: Dental plaque displays properties that are typical of biofilms and microbial communities in general, a clinical consequence of which is a reduced susceptibility to antimicrobial agents as well as pathogenic synergism. [source] Recent concepts in plaque formationJOURNAL OF CLINICAL PERIODONTOLOGY, Issue 2003J.-P. Bernimoulin Abstract Dental plaque is an adherent, bacterial film, and is the main pathological agent for periodontal diseases. The formation of dental plaque can occur both supragingivally and subgingivally. The development of plaque is a three-step process. Following the formation of a pellicle, pioneer micro-organisms will adhere to it, proliferate and form colonies. The final stage involves the aggregation of filamentous organisms and spirochetes into a cohesive biofilm. Many products of the plaque bacteria reach the subepithelial tissue, causing inflammatory responses such as increased vascularity and leukocyte diapedesis. Both supragingival and subgingival plaque may form a hard, mineralized mass called calculus. The surface of calculus harbours bacteria, which may exacerbate the inflammatory responses. An effective oral antiseptic must be active against a wide range of Gram-positive and Gram-negative bacterial species, including streptococci and fusobacteria. Ideally, an effective agent would also penetrate the plaque biofilm. Data show that essential oil and chlorhexidine mouthwashes have the broadest antimicrobial effects. [source] A sensitive loop-mediated isothermal amplification (LAMP) method for detection of Renibacterium salmoninarum, causative agent of bacterial kidney disease in salmonidsJOURNAL OF FISH DISEASES, Issue 6 2009S K Gahlawat Abstract Loop-mediated isothermal amplification (LAMP) is a novel technique for nucleic acid amplification with high specificity, sensitivity and rapidity and does not require expensive equipment or reagents. In the present study, we developed and evaluated a LAMP method for the rapid detection of Renibacterium salmoninarum causing the bacterial kidney disease in salmonids. This method was more sensitive than quantitative real-time polymerase chain reaction (qPCR). Using DNA template extracted from cultured R. salmoninarum, the LAMP method gave an amplification signal from template diluted to 10,8 while the limit of detection of qPCR was10,7. The LAMP method was also highly specific and did not amplify DNA purified from five other Gram-positive and -negative bacterial fish pathogens. The method also worked well using extracts of macrophages infected with R. salmoninarum and kidney material from rainbow trout, which were positive for R. salmoninarum by qPCR and crude R. salmoninarum culture. There was some evidence for inhibitors of the LAMP reaction in the kidney samples, which was overcome by diluting the sample. [source] Control of Foodborne Pathogenic and Spoilage Bacteria by Garcinol and Garcinia indicaextracts, and their Antioxidant ActivityJOURNAL OF FOOD SCIENCE, Issue 3 2004P. S. NEGI ABSTRACT: Spent rinds of Garcinia indicawere extracted with hexane and benzene using a Soxhlet extractor for 4 h. The major compound present in both extracts was found to be garcinol, as confirmed by fractionation and spectroscopic studies. The minimum inhibitory concentrations of hexane extract, benzene extract, and garcinol against a few Gram-positive and Gram-negative bacteria were in the range of 15 to 1000, 20 to 1250, and 1.5 to 500 ppm, respectively. The antioxidant activity of these fractions at 25 ppm was 63.2%, 61.7%, and 92.4%, respectively, as evaluated by the 1,1-diphenyl-2-picrylhydrazyl method. Hexane extract, benzene extract, and garcinol showed 1027, 985.5, and 1195.9 ,mol/g of ascorbic acid equivalents, respectively, at 100 ppm concentration using the phosphomolybdenum method. These findings may be useful for possible application of the previously described fractions as biopreservatives. [source] Circulating cell wall components derived from gram-negative, not gram-positive, bacteria cause a profound induction of the gene-encoding Toll-like receptor 2 in the CNSJOURNAL OF NEUROCHEMISTRY, Issue 3 2001Nathalie Laflamme The recent characterization of human homologs of Toll may be the missing link for the transduction events leading to nuclear factor-,B (NF-,B) activity and proinflammatory gene transcription during innate immune response. Mammalian cells may express as many as 10 distinct Toll-like receptors (TLRs), although TLR2 is a key receptor for recognizing cell wall components of Gram-positive bacteria. The present study investigated the effects of circulating bacterial cell wall components on the expression of the gene-encoding TLR2 across the mouse brain. Surprisingly, while Gram-negative components caused a robust increase in TLR2 transcription within the cerebral tissue, peptidoglycan (PGN) and lipoteichoic acid (LTA), either alone or combined, failed to modulate the receptor transcript. Indeed, the mRNA levels for TLR2 in the choroid plexus and few other regions of the brain remained similar between vehicle-, LTA-, PGN-, and LTA/PGN-administered mice at all the times evaluated (i.e. 30 min to 24 h post-intraperitoneal injection). This contrasts with the profound de novo expression of TLR2 following a single systemic injection of the lipopolysaccharide (LPS). The signal was first detected in regions devoid of blood,brain barrier and few blood vessels and microcapillaries. A second wave of TLR2 expression was also detected from these structures to their surrounding parenchymal cells that stained for a microglial marker iba1. The rapid induction of I,B, (index of NF-,B activity) and up-regulation of the adaptor protein MyD88 suggest that LPS-induced TLR2 transcription may be dependent on the NF-,B pathway. These data provide the evidence that TLR2 is not only present in the brain, but its encoding gene is regulated by cell wall components derived from Gram-negative, not Gram-positive, bacteria. The robust wave of TLR2-expressing microglial cells may have a determinant impact on the innate immune response that occurs in the brain during systemic infection by Gram-negative, not Gram-positive, bacteria. [source] Isolation and characterization of antimicrobial proteins and peptide from chicken liverJOURNAL OF PEPTIDE SCIENCE, Issue 6 2007Guan-Hong Li Abstract Endogenous antimicrobial peptides and proteins are crucial components of the innate immune system and play an essential role in the defense against infection. Antimicrobial activity was detected in the acid extract of livers harvested from healthy adult White Leghorn hens, Gallus gallus. Two antimicrobial proteins and one antimicrobial polypeptide were isolated from the liver extract by cation-exchange and gel filtration chromatography, followed by two-step reverse-phase high-performance liquid chromatography (RP-HPLC). These antimicrobial components were identified as histones H2A and H2B.V, and histone H2B C -terminal fragment using peptide mass fingerprinting and partial sequencing by tandem nanoelectrospray mass spectrometry. The proteins and the peptide identified in the present study, which exhibited antimicrobial activity against both Gram-positive and Gram-negative bacteria, were thermostable and showed salt-resistant activity. The antimicrobial properties of histones and histone fragment in chicken provide further evidence that histones, in addition to their role in nucleosome formation, may play an important role in innate host defense against intracellular or extracellular microbe invasion in a wide range of animal species. Copyright © 2007 European Peptide Society and John Wiley & Sons, Ltd. [source] Xanthogenate nucleic acid isolation from cultured and environmental cyanobacteriaJOURNAL OF PHYCOLOGY, Issue 1 2000Daniel Tillett The isolation of high-quality nucleic acids from cyanobacterial strains, in particular environmental isolates, has proven far from trivial. We present novel techniques for the extraction of high molecular weight DNA and RNA from a range of cultured and environmental cyanobacteria, including stains belonging to the genera Microcystis, Lyngbya, Pseudanabaena, Aphanizomenon, Nodularia, Anabaena, and Nostoc, based on the use of the nontoxic polysaccharide solubilizing compound xanthogenate. These methods are rapid, require no enzymatic or mechanical cell disruption, and have been used to isolate both DNA and RNA free of enzyme inhibitors or nucleases. In addition, these procedures have proven critical in the molecular analysis of bloom-forming and other environmental cyanobacterial isolates. Finally, these techniques are of general microbiological utility for a diverse range of noncyanobacterial microorganisms, including Gram-positive and Gram-negative bacteria and the Archea. [source] |