Home About us Contact | |||
Grafting Conditions (grafting + condition)
Selected AbstractsCeric ammonium sulfate/sodium disulfite initiated grafting of acrylamide on to Cassia reticulata seed gumJOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2008Vandana Singh Abstract Ceric ammonium sulfate/sodium disulfite redox system was evaluated for the poly(acrylamide) (PAM) grafting on to Cassia reticulata (CR) seed gum. Grafting conditions were optimized and the maximum %Grafting (%G) and %Efficiency (%E) achieved were 152 and 97.2%, respectively, using [disulfite] 0.005M; [ceric ammonium sulfate] 0.026M; [acrylamide] 0.11M; [gum] 0.125 g/25mL at 40 ± 0.2°C. Representative CR-grafted gum (CRPAM) was characterized by Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Under identical conditions, the redox initiator could result 142.6 %G and 91.2 %E on to guar gum (GG). Various physical properties of the CR gum/grafted CR gum, such as viscosity, water retention, and saline retention, were studied and compared with GG/grafted GG to find out the potential industrial use of CR gum and PAM- grafted -CR gum. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Distribution of acrylic acid grafted chains introduced into polyethylene film by simultaneous radiation grafting with water and ethanol as solventsJOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2007Zhengchi Hou Abstract The graft copolymerization of acrylic acid onto low-density polyethylene films by simultaneous ,-ray irradiation was carried out. The effect of water and ethanol as grafting solvents on the distribution of grafted poly (acrylic acid) in the low-density polyethylene films was studied with optical microscopy observations of dyed and sliced samples and attenuated total reflection/Fourier infrared spectroscopy analysis. When no vigorous homopolymerization occurred, both polyethylene and poly(acrylic acid) existed in the grafted layer, and the thickness of the grafted layer and the poly(acrylic acid) concentration in the grafted layer increased with an increasing degree of grafting, regardless of the grafting conditions, the former increasing faster than the latter. In comparison with water as the solvent, in the absence of the inhibitor, homopolymerization could be suppressed to a certain degree in the ethanol solvent system, whereas in the presence of the inhibitor, obvious homopolymerization occurred at a lower monomer concentration, and both the degree of grafting and the thickness of the grafted layer were lower. Such differences could be explained by the chain transfer and the relatively low solubility of poly(acrylic acid) in ethanol. In addition, an experimental scheme using optical microscopy to observe the dyed and sliced polymers was optimized. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1570,1577, 2007 [source] Functionalization of LDPE by Melt Grafting with Glycidyl Methacrylate and Reactive Blending with Polyamide-6MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 8 2003Qian Wei Abstract Low-density polyethylene (LDPE) was functionalized by melt radical grafting with glycidyl methacrylate (GMA) and employed for reactive blending with polyamide-6 (PA6). The effect of the reaction procedure on the grafting degree of LDPE- g -GMA samples (0.5,12.5 wt.-% GMA) was analyzed as a function of the concentration of GMA monomer, radical initiator (BTP), and addition of styrene as co-monomer. Optimized grafting conditions were obtained when the amount of the monomer is below 10 wt.-% and that of peroxide in the range 0.2,0.4 wt.-%. Binary blends of PA6 with LDPE- g -GMA (3.5 wt.-% GMA) and with LDPE at various compositions (80/20, 67/33, 50/50 wt.-%) were prepared in an internal mixer and their properties were evaluated by torque, SEM and DSC analyses. Morphological examination by SEM showed a large improvement of phase dispersion and interfacial adhesion in PA6/LDPE- g -GMA blends as compared with PA6/LDPE blends. The average diameter of dispersed polyolefin particles was about 0.4 ,m for LDPE- g -GMA contents <,50 wt.-%. A marked increase of melt viscosity was observed for the compatibilized blends depending on the concentration of grafted polyolefin, and it was accounted for by the reaction between the epoxy groups of GMA and the carboxyl/amine end-groups of PA6. The variation of torque was thus related to the molar ratio of reactive group concentration. The analysis of crystallization and melting behavior pointed out marked differences in the phase structure of the blends due to the presence of the functionalized polyolefin. Finally, the in situ formation of a graft copolymer between LDPE- g -GMA and PA6 was investigated by means of a selective dissolution method (Molau test) and by FT-IR and DSC analyses. SEM micrograph of fracture surface of PA6/LDPE- g -GMA 50/50 blend. [source] Comparative study of the radiation-induced grafting of styrene onto poly(tetrafluoroethylene- co -perfluoropropylvinyl ether) and polypropylene substrates.POLYMER INTERNATIONAL, Issue 5 2003I: Kinetics, structural investigation Abstract A comparative study has been made of the radiation grafting of styrene onto poly(tetrafluoroethylene- co -perfluoropropyl vinyl ether) (PFA) and polypropylene (PP) substrates, using the simultaneous irradiation method. Effects of grafting conditions such as monomer concentrations, type of solvent, dose rate and irradiation dose on the grafting yield were investigated. Under the same grafting conditions it was found that a higher degree of grafting of styrene was obtained using a mixture of dichloromethane/methanol solvents for PFA and methanol for PP and the degree of grafting was higher in PP than in PFA at all doses. However, the micro-Raman spectroscopy analysis of the graft revealed that, for the same degree of grafting, the penetration depth of the grafted polystyrene into the substrate was higher in PFA than in PP substrates. In both polymers the crystallinity was hardly affected by the grafting process and the degree of crystallinity decreased slightly with grafting dose. The dependence of the initial rate of grafting on the dose rate and the monomer concentration was found to be 0.6 and 1.4 order for PFA and 0.15 and 2.2 for PP, respectively. The degree of grafting increased with increasing radiation dose in both polymers. However, the grafting yield decreased with an increase in the dose rate. The increase in the overall grafting yield for PFA and PP was accompanied by a proportional increase in the penetration depth of the graft into the substrates. Copyright © 2003 Society of Chemical Industry [source] Irradiation-induced grafting of acrylonitrile onto activated carbon fiberPOLYMERS FOR ADVANCED TECHNOLOGIES, Issue 12 2009Sujuan Zhang Abstract Viscose-based activated carbon fiber (VACF) was modified with acrylonitrile (AN) by , -irradiation-induced grafting polymerization. Effects of the grafting conditions, such as concentrations of AN and divinylbenzene (DVB), pH value, and solvent on the grafting process were studied. The physicochemical properties of the fibers were characterized. The results show that AN can be effectively grafted onto the surface of VACF with the addition of DVB. The grafting yield is higher than 12% according to thermogravimetric (TG) analysis. The study shows that DVB can improve the grafting degree of AN in the form of grafting chains or agglomerate materials. After grafting modification, VACF shows a small decrease in the specific surface area. Copyright © 2009 John Wiley & Sons, Ltd. [source] |