Home About us Contact | |||
Graft Fibrosis (graft + fibrosis)
Selected AbstractsAnti-thrombin Therapy During Warm Ischemia and Cold Preservation Prevents Chronic Kidney Graft Fibrosis in a DCD ModelAMERICAN JOURNAL OF TRANSPLANTATION, Issue 1 2010F. Favreau Ischemia reperfusion injury (IRI) is pivotal for renal fibrosis development via peritubular capillaries injury. Coagulation represents a key mechanism involved in this process. Melagatran® (M), a thrombin inhibitor, was evaluated in an autotransplanted kidney model, using Large White pigs. To mimic deceased after cardiac death donor conditions, kidneys underwent warm ischemia (WI) for 60 min before cold preservation for 24 h in University of Wisconsin solution. Treatment with M before WI and/or in the preservation solution drastically improved survival at 3 months, reduced renal dysfunction related to a critical reduction in interstitial fibrosis, measured by Sirius Red staining. Tissue analysis revealed reduced expression of transforming growth factor-, (TGF-,) and activation level of its effectors phospho-Smad3, Smad4 and connective tissue growth factor (CTGF) after M treatment. Fibrinolysis activation was also observed, evidenced by downregulation of PAI-1 protein and gene expression. In addition, M reduced S100A4 expression and vimentin staining, which are markers for epithelial mesenchymal transition, a major pathway to chronic kidney fibrosis. Finally, expression of oxidative stress markers Nox2 and iNOS was reduced. We conclude that inhibition of thrombin is an effective therapy against IRI that reduces chronic graft fibrosis, with a significantly positive effect on survival. [source] Graft fibrosis after pediatric liver transplantation: Ten years of follow-up,HEPATOLOGY, Issue 3 2009Rene Scheenstra Previously we reported the presence of portal fibrosis in 31% (n = 84) of the grafts in protocol biopsies 1 year after pediatric liver transplantation (LTx). To assess the natural history of graft fibrosis after pediatric liver transplantation, we extended the analysis of graft histology in follow-up protocol biopsy specimens obtained 5 and 10 years after transplantation. We correlated histological results with clinical parameters at the time of LTx and during follow-up, to allow identification of risk factors for the development of fibrosis. From 1 year to 5 years after LTx, the prevalence of fibrosis increased from 31% to 65% (n = 66) but remained stable thereafter (at 10 years, 69%, n = 55). At 10 years after LTx, however, the percentage of patients with severe fibrosis had increased from 10% (at 5 years) to 29%. Of the 69% of children without fibrosis at 1 year post-transplantation, 64% (n = 39) had developed some degree of fibrosis at 10 years. Fibrosis was strongly related to transplant-related factors such as prolonged cold ischemia time, young age at the time of transplantation, high donor/recipient age ratio, and the use of partial grafts (P < 0.05). Fibrosis was not significantly related to rejection, chronic hepatitis, or the nature of the immunosuppressive therapy. Conclusion: Biopsies after pediatric LTx show that most grafts developed fibrosis within 5 years. At 10 years after LTx, the graft fibrosis had progressed to severe fibrosis in at least 25% of the patients. Development of fibrosis, starting either before or after the first year post-LTx, was strongly related to transplant-related factors, indicating the importance of these factors to long-term graft prognosis. (HEPATOLOGY 2008.) [source] Connective Tissue Growth Factor Promotes Fibrosis Downstream of TGF, and IL-6 in Chronic Cardiac Allograft RejectionAMERICAN JOURNAL OF TRANSPLANTATION, Issue 2 2010A. J. Booth Cardiac transplantation is an effective treatment for multiple types of heart failure refractive to therapy. Although immunosuppressive therapeutics have increased survival rates within the first year posttransplant, chronic rejection (CR) remains a significant barrier to long-term graft survival. Indicators of CR include patchy interstitial fibrosis, vascular occlusion and progressive loss of graft function. Multiple factors have been implicated in the onset and progression of CR, including TGF,, IL-6 and connective tissue growth factor (CTGF). While associated with CR, the role of CTGF in CR and the factors necessary for CTGF induction in vivo are not understood. To this end, we utilized forced expression and neutralizing antibody approaches. Transduction of allografts with CTGF significantly increased fibrotic tissue development, though not to levels observed with TGF, transduction. Further, intragraft CTGF expression was inhibited by IL-6 neutralization whereas TGF, expression remained unchanged, indicating that IL-6 effects may potentiate TGF,-mediated induction of CTGF. Finally, neutralizing CTGF significantly reduced graft fibrosis without reducing TGF, and IL-6 expression levels. These findings indicate that CTGF functions as a downstream mediator of fibrosis in CR, and that CTGF neutralization may ameliorate fibrosis and hypertrophy associated with CR. [source] Anti-thrombin Therapy During Warm Ischemia and Cold Preservation Prevents Chronic Kidney Graft Fibrosis in a DCD ModelAMERICAN JOURNAL OF TRANSPLANTATION, Issue 1 2010F. Favreau Ischemia reperfusion injury (IRI) is pivotal for renal fibrosis development via peritubular capillaries injury. Coagulation represents a key mechanism involved in this process. Melagatran® (M), a thrombin inhibitor, was evaluated in an autotransplanted kidney model, using Large White pigs. To mimic deceased after cardiac death donor conditions, kidneys underwent warm ischemia (WI) for 60 min before cold preservation for 24 h in University of Wisconsin solution. Treatment with M before WI and/or in the preservation solution drastically improved survival at 3 months, reduced renal dysfunction related to a critical reduction in interstitial fibrosis, measured by Sirius Red staining. Tissue analysis revealed reduced expression of transforming growth factor-, (TGF-,) and activation level of its effectors phospho-Smad3, Smad4 and connective tissue growth factor (CTGF) after M treatment. Fibrinolysis activation was also observed, evidenced by downregulation of PAI-1 protein and gene expression. In addition, M reduced S100A4 expression and vimentin staining, which are markers for epithelial mesenchymal transition, a major pathway to chronic kidney fibrosis. Finally, expression of oxidative stress markers Nox2 and iNOS was reduced. We conclude that inhibition of thrombin is an effective therapy against IRI that reduces chronic graft fibrosis, with a significantly positive effect on survival. [source] Critical Role for IL-6 in Hypertrophy and Fibrosis in Chronic Cardiac Allograft RejectionAMERICAN JOURNAL OF TRANSPLANTATION, Issue 8 2009J. A. Diaz Chronic cardiac allograft rejection is the major barrier to long term graft survival. There is currently no effective treatment for chronic rejection except re-transplantation. Though neointimal development, fibrosis, and progressive deterioration of graft function are hallmarks of chronic rejection, the immunologic mechanisms driving this process are poorly understood. These experiments tested a functional role for IL-6 in chronic rejection by utilizing serial echocardiography to assess the progression of chronic rejection in vascularized mouse cardiac allografts. Cardiac allografts in mice transiently depleted of CD4+ cells that develop chronic rejection were compared with those receiving anti-CD40L therapy that do not develop chronic rejection. Echocardiography revealed the development of hypertrophy in grafts undergoing chronic rejection. Histologic analysis confirmed hypertrophy that coincided with graft fibrosis and elevated intragraft expression of IL-6. To elucidate the role of IL-6 in chronic rejection, cardiac allograft recipients depleted of CD4+ cells were treated with neutralizing anti-IL-6 mAb. IL-6 neutralization ameliorated cardiomyocyte hypertrophy, graft fibrosis, and prevented deterioration of graft contractility associated with chronic rejection. These observations reveal a new paradigm in which IL-6 drives development of pathologic hypertrophy and fibrosis in chronic cardiac allograft rejection and suggest that IL-6 could be a therapeutic target to prevent this disease. [source] |