Graft Copolymers (graft + copolymer)

Distribution by Scientific Domains

Kinds of Graft Copolymers

  • amphiphilic graft copolymer


  • Selected Abstracts


    Synthesis of HIPS using an A2B2 Star-Type Graft Copolymer (PB -g- PS)

    MACROMOLECULAR REACTION ENGINEERING, Issue 6-7 2010
    Carlos de Anda
    Abstract The properties of HIPS are largely related to the morphology of the disperse rubber particles developed during polymerization. Since the graft copolymer PB -g- PS formed in situ has the role of a compatibilizer between the disperse rubber particles and the continuous PS phase, through the control of the molecular characteristics of the grafting species, the rubber particles' morphology and distribution can be controlled. Several HIPS were synthesized by radical polymerization using a mixture of polybutadiene and model graft copolymers, PB -g- PS, and the final materials were characterized physicochemically and morphologically. Different ratios of PB/graft copolymer were used in order to study the effects on the molecular characteristics and morphology of the HIPS obtained. [source]


    Dynamic Monte Carlo Simulation of Graft Copolymers Made with ATRP and Metallocene Catalysts

    MACROMOLECULAR SYMPOSIA, Issue 1 2006
    Mamdouh Al-Harthi
    Abstract The synthesis of polyolefin graft copolymers made with coordination polymerization was studied by dynamic Monte Carlo simulation. Narrow molecular weight distribution macromonomers, containing terminal vinyl groups made with atom-transfer radical polymerization (ATRP), were incorporated randomly into the polyolefin backbone. In addition to average molecular weights and polydispersity index, the model predicts the complete molecular weight distribution (MWD) and branching density of the graft copolymer. The effect of the concentration of macromonomers on the grafting efficiency was also studied. [source]


    Induction of chemical and moisture resistance in Saccharum spontaneum L fiber through graft copolymerization with methyl methacrylate and study of morphological changes

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2009
    Balbir Singh Kaith
    Abstract In this article, morphological modification of Saccharum spontaneum L, a natural fiber through graft copolymerization with methylmethacrylate using ferrous ammonium sulfate,potassium per sulfate redox initiator has been reported. Different reaction parameters such as reaction temperature, time, initiator molar ratio, monomer concentration, pH and solvent were optimized to get maximum graft yield (144%). The graft copolymers thus formed were characterized by Fourier transform infrared, scanning electron microscopy, X-ray diffraction and thermogravimetric, differential thermal analysis, and differential thermogravimetric techniques. Graft copolymer has been found to be more moisture resistant and also showed higher chemical and thermal resistance. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source]


    Synthesis of Substituted Polyacetylenes Grafted with Polystyrene Chains by the Macromonomer Method and Their Characterization

    MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 11 2006
    Wei Zhang
    Abstract Summary: A macromonomer (1) consisting of a polystyrene chain and an acetylenic chain end (,=,2,500, ,=,1.20) was prepared by atom transfer radical polymerization. Macromonomer 1 was copolymerized with phenylacetylene (2) and propargyl 2-bromopropionate (3) by using Rh catalysts at varying feed ratios from 10 to 50 wt.-% to produce graft copolymers 4 and 5, respectively. The synthesized copolymers 4 and 5 possessed a conjugated polyene main-chain and polystyrene grafts, and contained 11,34 and 16,77 wt.-% of polystyrene with of 61,400,144,000 and 19,300,22,500, respectively. Graft copolymer 4 was a yellow solid and thermally stable up to 225,°C, whereas 5 was a brown solid with weight loss beginning at 175,°C. Graft copolymers 4 and 5 exhibited UV-vis absorption edges at 525 and 425 nm, respectively, which are attributable to the conjugated main-chain structure. Copolymerization of the acetylene-terminated polystyrene-based macromonomer with monosubstituted acetylenes. [source]


    Dynamically cured natural rubber/EVA blends: influence of NR- g -poly(dimethyl (methacryloyloxymethyl)phosphonate) compatibilizer

    POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 5 2010
    Punyanich Intharapat
    Abstract Graft copolymer of natural rubber and poly(dimethyl(methacryloyloxymethyl)phosphonate) (NR- g -PDMMMP) was prepared in latex medium via photopolymerization. It was then used to promote the blend compatibility of dynamically cured 40/60 natural rubber (NR)/ethylene vinylacetate copolymer (EVA) blends using various loading levels at 1, 3, 5, 7, 9, 12, and 15,wt%. It was found that the increasing loading levels of NR- g -PDMMMP in the blends caused the increasing elastic modulus and complex viscosity until reaching the maximum values at a loading level of 9,wt%. The properties thereafter decreased with the increasing loading levels of NR- g -PDMMMP higher than 9,wt%. The smallest vulcanized rubber particles dispersed in the EVA matrix with the lowest tan , value was also observed at a loading level of 9,wt%. Furthermore, the highest tensile strength and elongation at break (i.e., 17.06 MPa and 660%) as well as the lowest tension set value (i.e., 27%) were also observed in the blend using this loading level of the compatibilizer. Addition of NR- g -PDMMMP in the dynamically cured NR/EVA blends also improved the thermal stability of the blend. That is, the decomposition temperature increased with the addition of the graft copolymer. However, the addition of NR- g -PDMMMP in the blends caused the decreasing degree of crystallinity of the EVA phase in the blend. However, the strength properties of the blend are still high because of the compatibilizing effect. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Improving low-density polyethylene/poly(ethylene terephthalate) blends with graft copolymers

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 4 2008
    D. E. El-Nashar
    Abstract Blends of low-density polyethylene (LDPE) and poly(ethylene terephthalate) (PET) were prepared with different weight compositions with a plasticorder at 240°C at a rotor speed of 64 rpm for 10 min. The physicomechanical properties of the prepared blends were investigated with special reference to the effects of the blend ratio. Graft copolymers, that is, LDPE-grafted acrylic acid and LDPE-grafted acrylonitrile, were prepared with ,-irradiation. The copolymers were melt-mixed in various contents (i.e., 3, 5, 7, and 9 phr) with a LDPE/PET blend with a weight ratio of 75/25 and used as compatibilizers. The effect of the compatibilizer contents on the physicomechanical properties and equilibrium swelling of the binary blend was investigated. With an increase in the compatibilizer content up to 7 phr, the blend showed an improvement in the physicomechanical properties and reduced equilibrium swelling in comparison with the uncompatibilized one. The addition of a compatibilizer beyond 7 phr did not improve the blend properties any further. The efficiency of the compatibilizers (7 phr) was also evaluated by studies of the phase morphology (scanning electron microscopy) and thermal properties (differential scanning calorimetry and thermogravimetric analysis). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


    Characterization and solution properties of a partially hydrolyzed graft copolymer of polyacrylamide and dextran

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2008
    S. Krishnamoorthi
    Abstract Graft copolymers of dextran (Dx) and polyacrylamide (PAM) were synthesized through the grafting of PAM chains onto a Dx backbone with a ceric-ion-induced solution polymerization technique. By the variation of the amount of the initiator (ceric ammonium nitrate), four different grades of graft copolymers were synthesized. The partial alkaline hydrolysis of Dx- g -PAM was carried out in an alkaline medium. Three grades of partially hydrolyzed products were synthesized through the variation of the amount of alkali. These hydrolyzed graft copolymers were characterized with elemental analysis, infrared spectroscopy, neutralization equivalent measurements, a rheological technique, scanning electron microscopy, thermal analysis, viscometry, and X-ray diffraction. The flocculation efficiency and viscosifying characteristics of the graft copolymers were enhanced upon their alkaline hydrolysis. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008. [source]


    Graft copolymers of methyl methacrylate and poly([R]-3-hydroxybutyrate) macromonomers as candidates for inclusion in acrylic bone cement formulations: Compression testing

    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2006
    Sophie Nguyen
    Abstract Graft copolymers of methyl methacrylate and biodegradable, biocompatible bacterial poly([R]-3-hydroxybutyrate) (PHB) blocks were synthesized and evaluated as possible constituents in acrylic bone cements for use in orthopaedic applications. The copolymers were produced by conventional free radical copolymerization and incorporated in one commercially available acrylic bone cement brand, Antibiotic Simplex® (AKZ). Cements with formulations containing 6.7 and 13.5 wt % of PMMA- graft -PHB were prepared. The morphology of the graft copolymer particles was suggested to influence the ability of the modified cement to be processed. Formulations containing more than about 20 wt % of the graft copolymer resulted in cement doughs that, both after first preparation and several hours later, were either sandy or soft spongy in texture and, thus, would be unacceptable for use in orthopaedic applications. The morphologies of the powders and the volumetric porosity (p) and ultimate compressive strength (UCS) of the cured cements were determined. Micro computed tomography showed that the cements presented average porosities of 13.5,16.9%. It was found that, while the powder particle shape and size for the experimental cements were markedly different from those of AKZ, there was no significant difference in either p or UCS for these cements. The latter was determined to be about 85 MPa for the modified cements and 84 MPa for Antibiotic Simplex. Furthermore, the UCS of all the cements exceeded the minimum level for acrylic bone cements, as stipulated by ASTM F-451. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2006 [source]


    Thermo-Responsive Nanogels Based on Poly[NIPAAm -graft- (2-alkyl-2-oxazoline)]s Crosslinked in the Micellar State

    MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 9 2010
    Stefan Zschoche
    Abstract Graft copolymers with thermo-sensitive PNIPAAm backbone and hydrophilic PEtOxa graft chains demonstrated typical amphiphilic behavior. For specific compositions stable micelle-like aggregates were formed depending on the temperature. Applying long polyoxazoline side chains (,>,120), stable reversible micelle-like aggregates with hydrodynamic radii of 30,40,nm could be obtained between 33 and 55,°C. These graft copolymers have been successfully crosslinked by electron-beam irradiation in the micellar state yielding core/shell type nanogels with thermo-reversible swelling behavior. The temperature dependent volume change of the new thermo-responsive nanogels due to the phase transition of the PNIPAAm core has been verified by DLS. [source]


    Crystallization Behavior of Poly(, -caprolactone) Grafted onto Cellulose Alkyl Esters: Effects of Copolymer Composition and Intercomponent Miscibility

    MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 20 2008
    Ryosuke Kusumi
    Abstract Graft copolymers of CA and CB with PCL were prepared at compositions rich in PCL. Kinetic DSC data were analyzed in terms of a folded-chain crystallization formula expanded for a binary mixing system of amorphous/crystalline polymers. The order of crystallization rates was plain PCL,>,CA- g -PCL (DS,=,2.98),>,CB- g -PCL (DS,=,2.1,2.95),>,CA- g -PCL (DS,=,2.1,2.5), and the fold-surface free energy of the PCL crystals obeyed the reverse order. POM revealed a generally tardy growth of spherulites for all the graft copolymers. The slower crystallization process may be ascribed primarily to the compulsory effect of anchoring PCL chains onto the semi-rigid cellulose backbone. Intercomponent miscibility of the CA/PCL and CB/PCL pairs was also taken into consideration. [source]


    Synthesis of Substituted Polyacetylenes Grafted with Polystyrene Chains by the Macromonomer Method and Their Characterization

    MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 11 2006
    Wei Zhang
    Abstract Summary: A macromonomer (1) consisting of a polystyrene chain and an acetylenic chain end (,=,2,500, ,=,1.20) was prepared by atom transfer radical polymerization. Macromonomer 1 was copolymerized with phenylacetylene (2) and propargyl 2-bromopropionate (3) by using Rh catalysts at varying feed ratios from 10 to 50 wt.-% to produce graft copolymers 4 and 5, respectively. The synthesized copolymers 4 and 5 possessed a conjugated polyene main-chain and polystyrene grafts, and contained 11,34 and 16,77 wt.-% of polystyrene with of 61,400,144,000 and 19,300,22,500, respectively. Graft copolymer 4 was a yellow solid and thermally stable up to 225,°C, whereas 5 was a brown solid with weight loss beginning at 175,°C. Graft copolymers 4 and 5 exhibited UV-vis absorption edges at 525 and 425 nm, respectively, which are attributable to the conjugated main-chain structure. Copolymerization of the acetylene-terminated polystyrene-based macromonomer with monosubstituted acetylenes. [source]


    Preparation of strach-graft-polyacrylamide copolymers by reactive extrusion,

    POLYMER ENGINEERING & SCIENCE, Issue 10 2003
    J. L. Willett
    Graft copolymers of starch and polyacrylamide (PAAm) were prepared by reactive extrusion using a co-rotating twin-screw extruder and ammonium presulfate initiator. Feed rates were 109 g/min to 325 g/min (all components) at a moisture content of 50%, with screw speeds in the range 100 rpm to 300 rpm. Starch/acrylamide weight ratios ranged from 5:1 to 1.3:1. Conversions of acrylamide to PAAm were generally 80% or greater with residence times of 400 seconds or less. Conversion increased with feed rate, suggesting that reaction efficiency was proportional to the degree of fill in the extruder. Grafting efficiencies were in the range of 50% to 80%. PAAm molecular weight increased with increasing acrylamide content, consistent with free radical polymerization kinetics. Extrusion temperature had no significant impact on acrylamide conversion. Graft frequency, as measured by the number of anhydroglucose units per graft, was essentially constant over the starch: acrylamide ratio and temperature range studied. These results show that reactive extrusion offers the potential for rapid production of starch graft copolymers with unsaturated monomers. [source]


    Graft copolymerization of methyl acrylate onto cellulose initiated by potassium ditelluratoargentate(III)

    POLYMER INTERNATIONAL, Issue 10 2004
    Yinghai Liu
    Abstract A novel redox system, potassium ditelluratoargentate(III) (DTA),cellulose, was employed to initiate the graft copolymerization of methyl acrylate onto cellulose in alkali aqueous solution. Grafting parameters, such as total conversion, grafting efficiency and grafting yield, were evaluated comparatively. The dependence of these parameters on temperature, reaction time, initiator concentration and ratio of monomer to cellulose was also investigated. Graft copolymers with high grafting parameters were obtained, which indicated that the DTA,cellulose redox pair is an efficient initiator for cellulose grafting. The proof of grafting was obtained from gravimetric analysis and infrared spectra. A tentative mechanism involving a two-step single-electron-transfer process of DTA is proposed to explain the generation of radicals and initiation. Thermogravimetry, X-ray diffraction and scanning electron microscopy were also carried out to study the thermal stability, crystallinity and morphology of the grafted copolymers. Copyright © 2004 Society of Chemical Industry [source]


    Influence of Grafting on the Solution Properties and the Dissociation Behavior of Ionic/Nonionic Grafted Copolymers

    MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 6 2007
    Jens Weber
    Abstract A new synthetic approach towards grafted terpolymers based on a poly[(methyl vinyl ether)- alt -(maleic anhydride)] backbone and poly(ethylene glycol) monomethyl ether (MPEG) side chains is presented. Resulting comb polymers with controllable grafting degree still have highly reactive anhydride moieties along the polymer backbone, as proved by IR spectroscopy. Grafting degree depends on the anhydride hydroxide stoichiometric ratio. It is not influenced by the molecular weight of MPEG. An increase in the grafting degree leads to a contraction of the polymer in the solution. Evaluation of potentiometric titration data gave a deeper insight into the dissociation process. The copolymers showed a two-step dissociation behavior. No significant influence of the grafting degree on the acidic strength was observed, whilst there is a strong effect of the grafting degree on the free energy change upon neutralization ,Gel. Grafting leads to a higher change in free energy ,Gel,1 for the first step but to lower ,Gel,2 required for the second step. [source]


    Synthesis of HIPS using an A2B2 Star-Type Graft Copolymer (PB -g- PS)

    MACROMOLECULAR REACTION ENGINEERING, Issue 6-7 2010
    Carlos de Anda
    Abstract The properties of HIPS are largely related to the morphology of the disperse rubber particles developed during polymerization. Since the graft copolymer PB -g- PS formed in situ has the role of a compatibilizer between the disperse rubber particles and the continuous PS phase, through the control of the molecular characteristics of the grafting species, the rubber particles' morphology and distribution can be controlled. Several HIPS were synthesized by radical polymerization using a mixture of polybutadiene and model graft copolymers, PB -g- PS, and the final materials were characterized physicochemically and morphologically. Different ratios of PB/graft copolymer were used in order to study the effects on the molecular characteristics and morphology of the HIPS obtained. [source]


    Size Fractionation of Metal Nanoparticles by Membrane Filtration,

    ADVANCED MATERIALS, Issue 5 2005
    A. Akthakul
    A novel thin film composite nanofiltration (NF) membrane is fabricated by coating a conventional ultrafiltration membrane with a self-assembling amphiphilic graft copolymer. The NF membranes are used in the fractionation of gold nanoparticles to achieve a well-defined particle cutoff diameter and reduced size dispersity (see Figure). [source]


    Free radical graft copolymerization of poly(n -butyl methacrylate) and poly(butyl acrylate) onto chlorinated rubber: Characterization and mechanical properties,

    ADVANCES IN POLYMER TECHNOLOGY, Issue 2 2004
    Shanaz Ahmed
    Abstract Graft copolymerization of n -butyl methacrylate and butyl acrylate onto chlorinated rubber was carried out in solution medium (xylene) using benzoyl peroxide as initiator. The chlorinated rubber-g-(n -butyl methacrylate- co -butyl acrylate) (CR-g-nBMA- co -BA) was isolated from the copolymerization mixture by extracting with isopropyl ether. Infrared (FT-IR) spectra, proton nuclear magnetic resonance (1H NMR) and thermogravimetric analysis of the graft copolymer showed the occurrence of grafting. Percent grafting and grafting efficiency calculated under different experimental conditions are discussed. The mechanical properties of the grafted CR films were studied under different strain rates. © 2004 Wiley Periodicals, Inc. Adv Polym Techn 23: 103,110, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20003 [source]


    Novel polymeric flocculants based on polyacrylamide grafted dextran in kaolin suspension

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2010
    S. Krishnamoorthi
    Abstract A study is done on ceric-ammonium-nitrate (CAN) initiated graft copolymerization of polyacrylamide (PAM) on to dextran (Dx) by solution polymerization technique. The average molecular weight of dextran is 7.0 × 10,6 g/mole. By changing the concentrations of the initiator in the reaction feed, a series of graft copolymer (Dx-g-PAM1 to Dx-g-PAM4) with variation in the number and length of the grafted PAM chains are obtained. The flocculation characteristics of various polymers are investigated by the use of settling tests in 2 wt % using kaolin suspensions. Among the series of graft copolymers, the one with highest molecular weight shows superior performance. The flocculation characteristics of the best-performing graft copolymer (Dx-g-PAM3) are compared with those of various commercially available flocculants and PAM in the kaolin suspension. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


    Characterization and solution properties of a partially hydrolyzed graft copolymer of polyacrylamide and dextran

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2008
    S. Krishnamoorthi
    Abstract Graft copolymers of dextran (Dx) and polyacrylamide (PAM) were synthesized through the grafting of PAM chains onto a Dx backbone with a ceric-ion-induced solution polymerization technique. By the variation of the amount of the initiator (ceric ammonium nitrate), four different grades of graft copolymers were synthesized. The partial alkaline hydrolysis of Dx- g -PAM was carried out in an alkaline medium. Three grades of partially hydrolyzed products were synthesized through the variation of the amount of alkali. These hydrolyzed graft copolymers were characterized with elemental analysis, infrared spectroscopy, neutralization equivalent measurements, a rheological technique, scanning electron microscopy, thermal analysis, viscometry, and X-ray diffraction. The flocculation efficiency and viscosifying characteristics of the graft copolymers were enhanced upon their alkaline hydrolysis. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008. [source]


    Properties of styrene-methyl methacrylate grafted DPNR latex at different monomer concentrations

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2008
    Siti Hajjar Che Man
    Abstract The graft copolymerization of styrene and methyl methacrylate (MMA) on to deproteinized natural rubber (DPNR) latex was carried out. The effect of monomer concentrations on grafting efficiency, thermal and mechanical properties was studied. The synthesized graft copolymers were characterized by proton nuclear magnetic resonance (1H NMR) and the highest grafting efficiency was found at 20 wt % monomer concentration. At low monomer concentration (10 wt %) the grafting was not significant and at 30 wt %, the grafting efficiency was slightly decreased. The thermal properties of graft copolymers were analyzed using differential scanning calorimeter (DSC) and thermal gravimetric analysis (TGA). The degradation temperature (Tdeg) of the graft copolymer was increased with the increase in monomer concentration which indicates the improvement in thermal stability. The DSC result showed improvement in miscibility between the components as the monomer concentration increased. The mechanical properties of gum and filled modified NR were also investigated in terms of tensile strength, tensile modulus and elongation at break. The tensile strength and elongation at break decreased with an increase in monomer concentration while tensile modulus increased as the monomer concentration increased. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


    Synthesis of a cellulose-grafted polymeric support and its application in the reductions of some carbonyl compounds

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2008
    Poonam K. Dhiman
    Abstract The reduction of carbonyl compounds by borohydride supported on a cellulose,anion exchange resin is known. The synthesis of a graft copolymer of cellulose and poly(4-vinyl pyridine) [CellO- g -poly(4-VP)] has been carried out with ceric ions as a redox initiator. A postgrafting treatment of CellO- g -poly(4-VP) with sodium borohydride has produced CellO- g -poly(4-VP) borane, a polymer-supported reducing agent. Optimum conditions pertaining to the maximum percentage of grafting have been evaluated as a function of the concentrations of the initiator, monomer, and nitric acid, amount of water, time, and temperature. The maximum percentage of grafting (585%) has been obtained with 0.927 mol/L of 4-vinyl pyridine and 0.018 mol/L of ceric ammonium nitrate in 120 min at 45°C. The polymeric support, CellO- g -poly(4-VP) borane, has been used for reduction reactions of different carbonyl compounds such as benzaldehyde, cyclohexanone, crotonaldehyde, acetone, and furfural. The graft copolymer has been characterized with IR and thermogravimetric analysis. The grafted cellulose has been found to be thermally stable. The reduced products have been characterized with IR and NMR spectral methods. The reagent has been reused for the reduction of a fresh carbonyl compound, and it has been observed that the polymeric reagent reduces the compounds successfully but with a little lower product yield. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


    Kinetics of graft copolymerization of poly(hexanedioic acid ethylene glycol) and methyl acrylate initiated by potassium diperiodatocuprate(III)

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 4 2007
    Libin Bai
    Abstract A redox system, potassium diperiodatocuprate(III) [DPC]/poly(hexanedioic acid ethylene glycol) (PEA) system, was employed to initiate graft copolymers of methyl acrylate (MA) and PEA in alkaline medium. The results indicate that the equation of the polymerization rate (Rp) is as follows: Rp = k [MA]1.62[Cu(III)]0.69, and that the overall activation energy of graft polymerization is 42.5 kJ/mol. The total conversion at different conditions (concentration of reactants, temperature, concentration of the DPC, and reaction time) was also investigated. The infrared spectra proved that the graft copolymers were synthesized successfully. Some basic properties of the graft copolymer were studied by instrumental analyses, including thermogravimetry and scanning electron microscope. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2376,2381, 2007 [source]


    Graft copolymers of methyl methacrylate and poly([R]-3-hydroxybutyrate) macromonomers as candidates for inclusion in acrylic bone cement formulations: Compression testing

    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2006
    Sophie Nguyen
    Abstract Graft copolymers of methyl methacrylate and biodegradable, biocompatible bacterial poly([R]-3-hydroxybutyrate) (PHB) blocks were synthesized and evaluated as possible constituents in acrylic bone cements for use in orthopaedic applications. The copolymers were produced by conventional free radical copolymerization and incorporated in one commercially available acrylic bone cement brand, Antibiotic Simplex® (AKZ). Cements with formulations containing 6.7 and 13.5 wt % of PMMA- graft -PHB were prepared. The morphology of the graft copolymer particles was suggested to influence the ability of the modified cement to be processed. Formulations containing more than about 20 wt % of the graft copolymer resulted in cement doughs that, both after first preparation and several hours later, were either sandy or soft spongy in texture and, thus, would be unacceptable for use in orthopaedic applications. The morphologies of the powders and the volumetric porosity (p) and ultimate compressive strength (UCS) of the cured cements were determined. Micro computed tomography showed that the cements presented average porosities of 13.5,16.9%. It was found that, while the powder particle shape and size for the experimental cements were markedly different from those of AKZ, there was no significant difference in either p or UCS for these cements. The latter was determined to be about 85 MPa for the modified cements and 84 MPa for Antibiotic Simplex. Furthermore, the UCS of all the cements exceeded the minimum level for acrylic bone cements, as stipulated by ASTM F-451. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2006 [source]


    Noncovalent functionalization of multiwalled carbon nanotubes using graft copolymer with naphthalene and its application as a reinforcing filler for poly(styrene- co -acrylonitrile)

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 19 2010
    Kyung Tae Kim
    Abstract A new compatibilizer, poly(vinyl benzyloxy ethyl naphthalene)- graft -poly(methyl methacrylate), for poly(styrene- co -acrylonirile) (SAN)/multi-walled carbon nanotubes (MWCNTs) composites was synthesized. It has been identified that naphthalene unit in backbone of compatibilizer interacts with MWCNTs via ,, interaction and that the PMMA graft of the compatibilizer is miscible with the SAN matrix. When a small amount of compatibilizer was added to SAN/MWCNT composites, MWCNTs were more homogeneously dispersed in SAN matrix than the case without compatibilizer, indicating that the compatibilizer improves the compatibility between SAN and MWCNTs. As a consequence, mechanical and electrical properties of the composites with compatibilizer were largely improved as compared with those of composites without compatibilizer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4184,4191, 2010 [source]


    Photoreactive nanomatrix structure formed by graft-copolymerization of 1,9-nonandiol dimethacrylate onto natural rubber

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 11 2010
    Yoshimasa Yamamoto
    Abstract Formation of photoreactive nanomatrix structure was investigated by graft-copolymerization of an inclusion complex of 1,9-nonandiol dimethacrylate (NDMA) with ,-cyclodextrin (,-CD) onto natural rubber particle using potassium persulfate (KPS), tert -butyl hydroperoxide/tetraethylenepentamine (TBHPO/TEPA), cumene hydroperoxide/tetraethylenepentamine (CHPO/TEPA), and benzoyl peroxide (BPO) as an initiator. The graft copolymer was characterized by 1H NMR and FTIR after coagulation. The conversion of NDMA and the amount of residual methacryloyl group were found to be 58.5 w/w % and 1.81 w/w %, respectively, under the suitable condition of the graft-copolymerization. The morphology of the film specimen, prepared from the graft copolymer, was observed by transmission electron microscopy (TEM) after staining the film with OsO4. Natural rubber particle of about 1.0 ,m in diameter was dispersed in poly(NDMA) matrix of about 10 nm in thickness. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2418,2424, 2010 [source]


    Titanium-mediated [CpTiCl2(OEt)] ring-opening polymerization of lactides: A novel route to well-defined polylactide-based complex macromolecular architectures

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 5 2010
    Nikolaos Petzetakis
    Abstract Among three cyclopentadienyl titanium complexes studied, CpTiCl2(OEt), containing a 5% excess CpTiCl3, has proven to be a very efficient catalyst for the ring-opening polymerization (ROP) of L -lactide (LLA) in toluene at 130 °C. Kinetic studies revealed that the polymerization yield (up to 100%) and the molecular weight increase linearly with time, leading to well-defined PLLA with narrow molecular weight distributions (Mw/Mn , 1.1). Based on the above results, PS- b -PLLA, PI- b -PLLA, PEO- b -PLLA block copolymers, and a PS- b -PI- b -PLLA triblock terpolymer were synthesized. The synthetic strategy involved: (a) the preparation of OH-end-functionalized homopolymers or diblock copolymers by anionic polymerization, (b) the reaction of the OH-functionalized polymers with CpTiCl3 to give the corresponding Ti-macrocatalyst, and (c) the ROP of LLA to afford the final block copolymers. PMMA- g -PLLA [PMMA: poly(methyl methacrylate)] was also synthesized by: (a) the reaction of CpTiCl3 with 2-hydroxy ethyl methacrylate, HEMA, to give the Ti-HEMA-catalyst, (b) the ROP of LLA to afford a PLLA methacrylic-macromonomer, and (c) the copolymerization (conventional and ATRP) of the macromonomer with MMA to afford the final graft copolymer. Intermediate and final products were characterized by NMR spectroscopy and size exclusion chromatography, equipped with refractive index and two-angle laser light scattering detectors. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1092,1103, 2010 [source]


    Synthesis and characterization of a poly(GMA)-graft-poly(Z- L -lysine) graft copolymer with a rod-like structure

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 18 2009
    You-Liang Tu
    Abstract This study applied the macromonomers and glycidyl methacrylate (GMA) to synthesize a series of the graft copolymers, poly(GMA)-graft-poly(Z- L -lysine), and investigated the conformation of the graft copolymer. The graft copolymers were synthesized with different GMA monomer ratios (28 to 89%) and different degrees of polymerization (DP) (8 to 15) of the poly(Z- L -lysine) side chain to analyze secondary structure relationships. Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), and both wide angle and small angle X-ray scattering spectroscopy (WAXS, SAXS) were used to investigate the relationship between the microstructure and conformation of the graft copolymers and the different monomer ratios and side chain DP. In AFM images, n8-G89 (the graft copolymer containing 89% GMA units and the macromonomer DP is 8) showed tiny and uniform rod-like structures, and n14-G43 (the graft copolymer containing 43% GMA units and the macromonomer DP is 14) showed uniform rod-like structures. FTIR spectra of the graft copolymers showed that the variations of ,-helix and ,-sheet secondary structures in the graft copolymers relate to the monomer ratios of the graft copolymers. However, the X-ray scattering patterns indicated that the graft copolymer conformations were mainly dependent on the poly(Z- L -lysine) side chain length, and these results were completely in accordance with the AFM images. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4655,4669, 2009 [source]


    Polymerization of N -isopropylacrylamide in the presence of poly(acrylic acid) and poly(methacrylic acid) containing ,-unsaturated end-groups

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 18 2007
    Ronan Mchale
    Poly(N -Isopropylacrylamide, NIPAM) propagating radicals add to acrylic acid (AA) macromonomer and methacrylic acid polymer containing unsaturated ,-end-group to respectively give novel graft copolymer (represented as , (AA) and , (NIPAM) units) and addition fragmentation chain transfer (AFCT). [Color figure can be viewed in the online issue, which is available at www.interscience.wiley. com.] [source]


    A starlike amphiphilic graft copolymer with hydrophilic poly(acrylic acid) backbones and hydrophobic polystyrene side chains

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 16 2007
    Dan Peng
    Abstract A well-defined starlike amphiphilic graft copolymer bearing hydrophilic poly(acrylic acid) backbones and hydrophobic polystyrene side chains was synthesized by successive atom transfer radical polymerization followed by the hydrolysis of poly-(methoxymethyl acrylate) backbone. A grafting-from strategy was employed for the synthesis of a graft copolymer with narrow molecular weight distribution. Hydrophobic polystyrene side chains were connected to the backbones through stable CC bonds. The poly(methoxymethyl acrylate) backbones can be easily hydrolyzed with HCl without affecting the hydrophobic polystyrene side chains. This kind of amphiphilic graft copolymer can form stable sphere micelles in water. The sizes of the micelles were dependent on the ionic strength and pH value. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3687,3697, 2007 [source]


    Copolymerization of poly(vinyl alcohol)- graft -poly(1,4-dioxan-2-one) with designed molecular structure by a solid-state polymerization method

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 9 2006
    Si-Chong Chen
    Abstract Poly(vinyl alcohol)- graft -poly(1,4-dioxan-2-one) (PVA- g -PPDO) with designed molecular structure was synthesized by a solid-state polymerization. The solid-state copolymerization was preceded by a graft copolymerization of PDO initiated with PVA as a multifunctional initiator, and Sn (Oct)2 as a coininitiator/catalyst in a homogeneous molten state. The polymerization temperature was then decreased and the copolymerization was carried out in a solid state. The products prepared by solid-state polymerization were characterized by 1H NMR and DSC, and were compared with those synthesized in the homogeneous molten state. The degree of polymerization (Dp), degree of substitution (Ds), yield and the average molecular weight of the graft copolymer with different molecular structure were calculated from the 1H NMR spectra. The results show that the crystallization process during the solid-state polymerization may suppress the undesirable inter- or intramolecular side reactions, then resulting in a controlled molecular structure of PVA- g -PPDO. The results of DSC measurement show that the molecular structures determine the thermal behavior of the PVA- g -PPDO. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3083,3091, 2006 [source]