Home About us Contact | |||
Alloy Surface (alloy + surface)
Selected AbstractsCO Adsorption on a LaNi5 Hydrogen Storage Alloy Surface: A Theoretical InvestigationCHEMPHYSCHEM, Issue 11 2008Song Han Dr. Abstract Density functional theory calculations are carried out to study CO adsorption on the (001) surface of a LaNi5 hydrogen storage alloy. At low coverages, CO favors adsorption on NiNi bridge sites. With an increase in CO coverage, the decrease in the adsorption energy is much larger for NiNiCO bridge adsorption than that for NiCO on-top adsorption. Thus, the latter sites in the relatively stable adsorption structure are preferentially utilized at high CO coverages. The nature of the bonding between CO and the LaNi5 (001) surface is analyzed in detail. [source] Neutron Diffraction Measurement of Residual Stresses in Friction Stir Processed Nanocomposite Surface Layer,ADVANCED ENGINEERING MATERIALS, Issue 8 2009Hanbing Xu FSP is used to introduce Al2O3 nano-sized particles to an Al 6061 alloy surface to form a hard, strong, and wear-resistant Al-Al2O3 nanocomposite layer. The residual stresses in the FSP zones (with and without Al2O3 particles) have been quantitatively analyzed using neutron diffraction. Results indicated tensile macro-level residual stresses in all three directions with peak values around 100 MPa longitudinally. [source] The effect of surface treatments on the fretting behavior of Ti-6Al-4V alloyJOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 2 2008Matteo Dalmiglio Abstract Stem modularity in total hip replacement introduces an additional taper joint between Ti-6Al-4V stem components with the potential for fretting corrosion processes. One possible way to reduce the susceptibility of the Ti-6Al-4V/Ti-6Al-4V interface to fretting is the surface modification of the Ti-6Al-4V alloy. Among the tested, industrially available surface treatments, a combination of two deep anodic spark deposition treatments followed by barrel polishing resulted in a four times lower material release with respect to untreated, machined fretting pad surfaces. The fretting release has been quantified by means of radiotracers introduced in the alloy surface by proton irradiation. In a simple sphere on flat geometry, the semispherical fretting pads were pressed against flat, dog-bone shaped Ti-6Al-4V fatigue samples cyclically loaded at 4 Hz. In this way a cyclic displacement amplitude along the surfaces of 20 ,m has been achieved. A further simplification consisted in the use of deionized water as lubricant. A comparison of the radiotracer results with an electrochemical material characterization after selected treatments by potentiostatic tests of modular stems in 0.9% NaCl at 40°C for 10 days confirmed the benefit of deep anodic spark deposition and subsequent barrel polishing for improving the fretting behavior of Ti-6Al-4V. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2008 [source] Transfer of metallic debris from the metal surface of an acetabular cup to artificial femoral heads by scraping: Comparison between alumina and cobalt,chrome headsJOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2008Chong Bum Chang Abstract We aimed to investigate the transfer of metal to both ceramic (alumina) and metal (cobalt,chrome) heads that were scraped by a titanium alloy surface under different load conditions. The ceramic and metal heads for total hip arthroplasties were scraped by an acetabular metal shell under various loads using a creep tester. Microstructural changes in the scraped area were visualized with a scanning electron microscope, and chemical element changes were assessed using an energy dispersive X-ray spectrometry. Changes in the roughness of the scraped surface were evaluated by a three-dimensional surface profiling system. Metal transfer to the ceramic and metal heads began to be detectable at a 10 kg load, which could be exerted by one-handed force. The surface roughness values significantly increased with increasing test loads in both heads. When the contact force increased, scratching of the head surface occurred in addition to the transfer of metal. The results documented that metallic debris was transferred from the titanium alloy acetabular shell to both ceramic and metal heads by minor scraping. This study suggests that the greatest possible effort should be made to protect femoral heads, regardless of material, from contact with metallic surfaces during total hip arthroplasty. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2008 [source] Half-metallicity and magnetism at Heusler alloy surfaces: Co2MSi(001) (M = Ti, Cr)PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 8 2008Ying Jiu Jin Abstract We investigated the electronic structures, magnetism, and half-metallicity at the (001) surfaces of full-Heusler alloys, Co2MSi (M = Ti, Cr), by using the all-electron full-potential linearized augmented plane wave method within the generalized gradient approximation. Both the Co-terminated (Co-term) and the MSi-terminated (MSi-term) surfaces were considered. From the calculated atom-resolved density of states, we found that the half-metallicity was destroyed at the Co-term surfaces for both alloys. The electronic structures at the MSi-term surfaces of the two alloys showed much different behavior. The half-metallicity was retained at the TiSi-term for Co2TiSi(001) but the minority spin gap was much reduced due to surface states located just below the Fermi level. On the other hand the half-metallicity was destroyed at the CrSi-term of Co2CrSi(001) due to the surface states located at the Fermi level. The calculated magnetic moment of the surface Co atom of the Co-term for Co2CrSi(001) was increased slightly to 1.05,B with respect to that of the deep inner layers (,1.00,B), while that for Co2TiSi(001) was decreased to 0.88,B. Large enhancement of the magnetic moment was found for the surface Ti atoms at TiSi-term of Co2TiSi(001) and Cr atoms at CrSi-term of Co2CrSi(001) with values of 0.07,B and 2.91(B, respectively. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |