Home About us Contact | |||
Allosteric Ligand (allosteric + ligand)
Selected AbstractsAllosteric ligands for G protein-coupled receptors: A novel strategy with attractive therapeutic opportunitiesMEDICINAL RESEARCH REVIEWS, Issue 3 2010Marco De Amici Abstract Allosteric receptor ligands bind to a recognition site that is distinct from the binding site of the endogenous messenger molecule. As a consequence, allosteric agents may attach to receptors that are already transmitter-bound. Ternary complex formation opens an avenue to qualitatively new drug actions at G protein-coupled receptors (GPCRs), in particular receptor subtype selective potentiation of endogenous transmitter action. Consequently, suitable exploitation of allosteric recognition sites as alternative molecular targets could pave the way to a drug discovery paradigm different from those aimed at mimicking or blocking the effects of endogenous (orthosteric) receptor activators. The number of allosteric ligands reported to modulate GPCR function is steadily increasing and some have already reached routine clinical use. This review aims at introducing into this fascinating field of drug discovery and at providing an overview about the achievements that have already been made. Various case examples will be discussed in the framework of GPCR classification (family A, B, and C receptors). In addition, the behavior at muscarinic receptors of hybrid derivatives incorporating both an allosteric and an orthosteric fragment in a common molecular skeleton will be illustrated. © 2009 Wiley Periodicals, Inc. Med Res Rev, 30, No. 3, 463,549, 2010 [source] Expression of SLURP-1, an endogenous ,7 nicotinic acetylcholine receptor allosteric ligand, in murine bronchial epithelial cellsJOURNAL OF NEUROSCIENCE RESEARCH, Issue 12 2009Kazuhide Horiguchi Abstract Mammalian secreted lymphocyte antigen-6/urokinase-type plasminogen activator receptor-related peptide-1 (SLURP-1) is a positive allosteric ligand for ,7 nicotinic acetylcholine (ACh) receptors (,7 nAChRs) that potentiates responses to ACh and elicits proapoptotic activity in human keratinocytes. Mutations in the gene encoding SLURP-1 have been detected in patients with Mal de Meleda, a rare autosomal recessive skin disorder characterized by transgressive palmoplantar keratoderma. On the basis of these findings, SLURP-1 is postulated to be involved in regulating tumor necrosis factor-, (TNF-,) release from keratinocytes and macrophages via ,7 nAChR-mediated pathways. In the present study, we assessed SLURP-1 expression in lung tissue from C57BL/6J mice to investigate the functions of SLURP-1 in pulmonary physiology and pathology. Immunohistochemical and in situ hybridization analyses revealed expression of SLURP-1 protein and mRNA, respectively, exclusively in ciliated bronchial epithelial cells. This was supported by Western blotting showing the presence of the 9.5-kDa SLURP-1 protein in whole-lung tissue and trachea. In addition, high-affinity choline transporter (CHT1) was detected in apical regions of bronchial epithelial cells and in neurons located in the lamina propria of the bronchus, suggesting that bronchial epithelial cells are able to synthesize both SLURP-1 and ACh. We also observed direct contact between F4/80-positive macrophages and bronchial epithelial cells and the presence of invading macrophages in close proximity to CHT1-positive nerve elements. Collectively, these results suggest that SLURP-1 contributes to the maintenance of bronchial epithelial cell homeostasis and to the regulation of TNF-, release from macrophages in bronchial tissue. © 2009 Wiley-Liss, Inc. [source] Allosteric ligands for G protein-coupled receptors: A novel strategy with attractive therapeutic opportunitiesMEDICINAL RESEARCH REVIEWS, Issue 3 2010Marco De Amici Abstract Allosteric receptor ligands bind to a recognition site that is distinct from the binding site of the endogenous messenger molecule. As a consequence, allosteric agents may attach to receptors that are already transmitter-bound. Ternary complex formation opens an avenue to qualitatively new drug actions at G protein-coupled receptors (GPCRs), in particular receptor subtype selective potentiation of endogenous transmitter action. Consequently, suitable exploitation of allosteric recognition sites as alternative molecular targets could pave the way to a drug discovery paradigm different from those aimed at mimicking or blocking the effects of endogenous (orthosteric) receptor activators. The number of allosteric ligands reported to modulate GPCR function is steadily increasing and some have already reached routine clinical use. This review aims at introducing into this fascinating field of drug discovery and at providing an overview about the achievements that have already been made. Various case examples will be discussed in the framework of GPCR classification (family A, B, and C receptors). In addition, the behavior at muscarinic receptors of hybrid derivatives incorporating both an allosteric and an orthosteric fragment in a common molecular skeleton will be illustrated. © 2009 Wiley Periodicals, Inc. Med Res Rev, 30, No. 3, 463,549, 2010 [source] Central Nicotinic Receptors: Structure, Function, Ligands, and Therapeutic PotentialCHEMMEDCHEM, Issue 6 2007Novella Romanelli Abstract The growing interest in nicotinic receptors, because of their wide expression in neuronal and non-neuronal tissues and their involvement in several important CNS pathologies, has stimulated the synthesis of a high number of ligands able to modulate their function. These membrane proteins appear to be highly heterogeneous, and still only incomplete information is available on their structure, subunit composition, and stoichiometry. This is due to the lack of selective ligands to study the role of nAChR under physiological or pathological conditions; so far, only compounds showing selectivity between ,4,2 and ,7 receptors have been obtained. The nicotinic receptor ligands have been designed starting from lead compounds from natural sources such as nicotine, cytisine, or epibatidine, and, more recently, through the high-throughput screening of chemical libraries. This review focuses on the structure of the new agonists, antagonists, and allosteric ligands of nicotinic receptors, it highlights the current knowledge on the binding site models as a molecular modeling approach to design new compounds, and it discusses the nAChR modulators which have entered clinical trials. [source] |