Allometric Coefficient (allometric + coefficient)

Distribution by Scientific Domains


Selected Abstracts


Comparative fire ecology of tropical savanna and forest trees

FUNCTIONAL ECOLOGY, Issue 6 2003
William A. Hoffmann
Summary 1Fire is important in the dynamics of savanna,forest boundaries, often maintaining a balance between forest advance and retreat. 2We performed a comparative ecological study to understand how savanna and forest species differ in traits related to fire tolerance. We compared bark thickness, root and stem carbohydrates, and height of reproductive individuals within 10 congeneric pairs, each containing one savanna and one forest species. 3Bark thickness of savanna species averaged nearly three times that of forest species, thereby reducing the risk of stem death during fire. The allometric relationship between bark thickness and stem diameter differed between these two tree types, with forest species tending to have a larger allometric coefficient. 4The height of reproductive individuals of forest species averaged twice that of congeneric savanna species. This should increase the time necessary for forest species to reach reproductive size, thereby reducing their capacity to reach maturity in the time between consecutive fires. 5There was no difference in total non-structural carbohydrate content of stems or roots between savanna and forest species, though greater allocation to total root biomass by savanna species probably confers greater capacity to resprout following fire. 6These differences in fire-related traits may largely explain the greater capacity of savanna species to persist in the savanna environment. [source]


Allometric analysis of ciprofloxacin and enrofloxacin pharmacokinetics across species

JOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 3 2004
S. K. Cox
The purpose of this study was to examine the allometric analysis of ciprofloxacin and enrofloxacin using pharmacokinetic data from the literature. The pharmacokinetic parameters used were half-life, clearance and volume of distribution. Relationships between body weight and the pharmacokinetic parameter were based on the empirical formula Y = aWb, where Y is half-life, clearance or volume of distribution, W the body weight and a is an allometric coefficient (intercept) that is constant for a given drug. The exponential term b is a proportionality constant that describes the relationship between the pharmacokinetic parameter of interest and body weight. A total of 21 different species of animals were studied. Results of the allometric analyses indicated similarity between clearance and volume of distribution as they related to body weight for both drugs. Results of the current analyses indicate it is possible to use allometry to predict pharmacokinetic variables of enrofloxacin or ciprofloxacin based on body size of species. This could provide information on appropriate doses of ciprofloxacin and enrofloxacin for all species. [source]


O3 impacts on plant development: a meta-analysis of root/shoot allocation and growth

PLANT CELL & ENVIRONMENT, Issue 7 2006
D. A. GRANTZ
ABSTRACT The mechanism of O3 action on plants remains poorly characterized. Symptoms include visible lesions on the leaf surface, reduced growth and a hypothesized reduction in allocation of carbohydrate to roots. The generality of this latter phenomenon has not been demonstrated. Here, a meta-analysis is performed of all available experimental data, to test the hypotheses that O3 exposure of the shoot inhibits biomass allocation below ground (the root/shoot allometric coefficient, k) and inhibits whole-plant growth rate [relative growth rate (RGR)]. Both k and RGR were significantly reduced by O3 (5.6 and 8.2%, respectively). Variability in k was greater than in RGR, and both exhibited some positive as well as mostly negative responses. The effects on k were distinct from the effects on RGR. In some cases, k was reduced while RGR was unaffected. Slow-growing plants (small RGR) exhibited the largest declines in k. These observations may have mechanistic implications regarding O3 phytotoxicity. There were no effects of type of exposure chamber on sensitivity to O3. The analyses indicate that the O3 inhibition of allocation to roots is real and general, but variable. Further experiments are needed for under-represented plant groups, to characterize exceptions to this generalization and to evaluate O3,environment interactions. [source]


Quantifying the dynamics of sugar concentration in berries of Vitis vinifera cv. Shiraz: a novel approach based on allometric analysis

AUSTRALIAN JOURNAL OF GRAPE AND WINE RESEARCH, Issue 2 2007
VICTOR O. SADRAS
Abstract Concentrations of key compounds (e.g. sugar) in berries are the net result of relative changes in the amount of compound per berry and berry size. The complex nature of concentrations is widely recognised, but the widespread use of chronological scales for comparisons implies that ontogenetic drift or size-dependent effects are often overlooked. This paper presents an allometric analysis of sugar concentration in berries of cv. Shiraz as a way to formally account for ontogenetic drift. Our starting point is the double-sigmoid growth pattern of a grape berry where we distinguish Phase 1, from flowering to veraison; Phase 2, from veraison to peak berry fresh mass, and Phase 3, after peak fresh mass. Phase 3 explicitly accounts for the late season shrinkage typical of Shiraz berries. We advance an allometric model of sugar per berry with berry fresh mass, rather than time, as descriptor. The condition for an increase in sugar concentration in Phase 2 is that the relative rate of sugar accumulation per berry (RSB) exceeds the relative rate of berry net accumulation of fresh mass (RFM). This is equivalent to an allometric coefficient, calculated as the slope of the regression between amount of sugar per berry and berry mass in a log-log scale, being greater than 1. For Phase 3, the condition for increase of sugar concentration is that a large reduction in berry mass offsets any putative change of sugar per berry, yielding an allometric coefficient < 1. Such an allometric model was tested against measured data from sixteen contrasting crops resulting from the combination of eight water regimes and two seasons. Berry mass peaked between 96 and 105 days after anthesis, and these dates were used to separate Phases 2 and 3. In Phase 2, the relative rate of increase in sugar per berry varied from 0.01 to 0.02 d -1 in comparison to the relative rate of increase in berry fresh mass that varied from 0.0038 to 0.0066 d -1. Sugar per berry thus increased 2.4,3.3 times faster than berry mass, with allometric coefficients between 1.98 and 2.91 accounting for 78% of the variation in the relative rate of change of sugar concentration. In Phase 3, the relative rate of change in sugar per berry was not different from zero (P 0.05) in most cases, whereas the rate of change in berry size ranged from ,0.0013 to ,0.0035 d -1 and was significant (P < 0.05) in 14 out 16 cases. The small changes in sugar per berry and the net loss of berry material yielded allometric coefficients between 0.17 and 1.11, which accounted for 72% of the variation in the relative rate of change in sugar concentration. We conclude that a model, which pivots around peak berry mass, with allometric coefficients above 1 in Phase 2 and below 1 in Phase 3, is suitable to quantitatively account for ontogenetic drift in the dynamics of sugar concentration in berries of Shiraz. This allometric approach demonstrated that sugar per berry during the stage of berry shrinkage is a plastic trait under significant environmental influence. For the same genotype, environmental conditions could determine either, a putative backflow of water accounting for net loss of berry fresh mass (RFM < 0) that could also carry some sugar from berries back to the parent vine (RSB < 0) or a small gain of sugar (RSB 0) closely coupled with a net loss of berry fresh mass (P= 0.003). [source]