Allograft Tolerance (allograft + tolerance)

Distribution by Scientific Domains


Selected Abstracts


Just How Stable Is Allograft Tolerance?

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 7 2010
R. G. Gill
In some cases, an infection may trigger allograft rejection even after putative regulatory tolerance has been established, raising the question: is allograft tolerance ever really stable? See article by Wang et al on page 1524. [source]


Infusion of Mesenchymal Stem Cells and Rapamycin Synergize to Attenuate Alloimmune Responses and Promote Cardiac Allograft Tolerance

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 8 2009
W. Ge
The inherent immunosuppressive properties and low immunogenicity of mesenchymal stems cells (MSCs) suggested their therapeutic potential in transplantation. We investigated whether MSCs could prolong allograft survival. Treatment involving infusion of MSCs into BALB/c recipients 24 hours after receiving a heart allograft from a C57BL/6 donor significantly abated rejection and doubled graft mean survival time compared to untreated recipients. Furthermore, combination therapy of MSCs and low-dose Rapamycin (Rapa) achieved long-term heart graft survival (>100 days) with normal histology. The treated recipients readily accepted donor skin grafts but rejected third-party skin grafts, indicating the establishment of tolerance. Tolerant recipients exhibited neither intragraft nor circulating antidonor antibodies, but demonstrated significantly high frequencies of both tolerogenic dendritic cells (Tol-DCs) and CD4+CD25+Foxp3+T cells in the spleens. Infusion of GFP+C57BL/6-MSCs in combination with Rapa revealed that the GFP-MSCs accumulated in the lymphoid organs and grafts of tolerant recipients. Thus, engraftment of infused MSCs within the recipient's lymphoid organs and allograft appeared to be instrumental in the induction of allograft-specific tolerance when administered in combination with a subtherapeutic dose of Rapamycin. This study supports the clinical applicability of MSCs in transplantation. [source]


CD8+ T-Cell Depletion and Rapamycin Synergize with Combined Coreceptor/Stimulation Blockade to Induce Robust Limb Allograft Tolerance in Mice

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 12 2008
Z. Li
The growing development of composite tissue allografts (CTA) highlights the need for tolerance induction protocols. Herein, we developed a mouse model of heterotopic limb allograft in a stringent strain combination in which potentially tolerogenic strategies were tested taking advantage of donor stem cells in the grafted limb. BALB/c allografts were transplanted into C57BL/6 mice treated with anti-CD154 mAb, nondepleting anti-CD4 combined to either depleting or nondepleting anti-CD8 mAbs. Some groups received additional rapamycin. Both depleting and nondepleting mAb combinations without rapamycin only delayed limb allograft rejection, whereas the addition of rapamycin induced long-term allograft survival in both combinations. Nevertheless, robust donor-specific tolerance, defined by the acceptance of a fresh donor-type skin allograft and simultaneous rejection of third-party grafts, required initial CD8+ T-cell depletion. Mixed donor-recipient chimerism was observed in lymphoid organs and recipient bone marrow of tolerant but not rejecting animals. Tolerance specificity was confirmed by the inability to produce IL-2, IFN-, and TNF-, in MLC with donor antigen while significant alloreactivity persisted against third- party alloantigens. Collectively, these results show that robust CTA tolerance and mixed donor-recipient chimerism can be achieved in response to the synergizing combination of rapamycin, transient CD8+ T-cell depletion and costimulation/coreceptor blockade. [source]


Role of IFN, in Allograft Tolerance Mediated by CD4+CD25+ Regulatory T Cells by Induction of IDO in Endothelial Cells

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 11 2007
P. Thebault
Regulatory T cells have been described to specifically accumulate at the site of regulation together with effector T cells and antigen-presenting cells, establishing a state of local immune privilege. However the mechanisms of this interplay remain to be defined. We previously demonstrated, in a fully MHC mismatched rat cardiac allograft combination, that a short-term treatment with a deoxyspergualine analogue, LF15-0195, induces long-term allograft tolerance with a specific expansion of regulatory CD4+CD25+T cells that accumulate within the graft. In this study, we show that following transfer of regulatory CD4+T cells to a secondary irradiated recipient, regulatory CD25+Foxp3+ and CD25+Foxp3, CD4+T cells accumulate at the graft site and induce graft endothelial cell expression of Indoleamine 2, 3-dioxygenase (IDO) by an IFN,-dependent mechanism. Moreover, in vivo transfer of tolerance can be abrogated by blocking IFN, or IDO, and anti-IFN, reduces the survival/expansion of alloantigen-induced regulatory Foxp3+CD4+T cells. Together, our results demonstrate interrelated mechanisms between regulatory CD4+CD25+T cells and the graft endothelial cells in this local immune privilege, and a key role for IFN, and IDO in this process. [source]


Anti-CD28 Antibody-Induced Kidney Allograft Tolerance Related to Tryptophan Degradation and TCR, Class II, B7+ Regulatory Cells

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 10 2005
Fabienne Haspot
B7/CTLA-4 interactions negatively regulate T-cell responses and are necessary for transplant tolerance induction. Tolerance induction may therefore be facilitated by selectively inhibiting the B7/CD28 pathway without blocking that of B7/CTLA-4. In this study, we selectively inhibited CD28/B7 interactions using a monoclonal antibody modulating CD28 in a rat model of acute kidney graft rejection. A short-term treatment abrogated both acute and chronic rejection. Tolerant recipients presented few alloantibodies against donor MHC class II molecules, whereas untreated rejecting controls developed anti-MHC class I and II alloantibodies. PBMC from tolerant animals were unable to proliferate against donor cells but could proliferate against third-party cells. The depletion of B7+, non-T cells fully restored this reactivity whereas purified T cells were fully reactive. Also, NK cells depletion restored PBMC reactivity in 60% of tolerant recipients. Conversely, NK cells from tolerant recipients dose-dependently inhibited alloreactivity. PBMC anti-donor reactivity could be partially restored in vitro by blocking indoleamine-2,3-dioxygenase (IDO) and iNOS. In vivo, pharmacologic inhibition of these enzymes led to the rejection of the otherwise tolerated transplants. This study demonstrates that an initial selective blockade of CD28 generates B7+ non-T regulatory cells and a kidney transplant tolerance sustained by the activity of IDO and iNOS. [source]


THIS ARTICLE HAS BEEN RETRACTED STEALTH matters: a novel paradigm of durable primate allograft tolerance

IMMUNOLOGICAL REVIEWS, Issue 1 2001
J. M. Thomas
Summary: We review a novel strategy for tolerance induction developed in rhesus macaques and termed STEALTH. We summarize the evolution of the STEALTH model, the results of successful trials in inducing long-term, stable transplant tolerance in rhesus kidney and diabetic islet recipients and discuss information related to the mechanism by which durable tolerance is induced. STEALTH tolerance is induced by a 3-day treatment course of CD3, immunotoxin (IT) combined with a 14-day treatment with deoxyspergualin (DSG). IT causes profound depletion of sessile lymph node T cells as well as the more accessible circulating T cells. DSG, an inhibitor of HSC 70-mediated NF-,B nuclear translocation, arrests maturation of myeloid dendritic cells, blocks production of proinflammatory cytokines induced by IT administration, and promotes systemic production of Th2 type cytokines that persist indefinitely. Such Th2 cytokine deviation has not been reported in NHP transplant recipients. These studies provide proof of principle in a preclinical model that prevention of both acute and chronic allograft rejection, for at least 2.2,4.9 years of follow-up, can be achieved in NHP in the absence of chronic immunosuppressive drugs or other interventions. This strategy for inducing NHP tolerance is discussed in relation to current tolerance paradigms. [source]


AKT1 leader gene and downstream targets are involved in a rat model of kidney allograft tolerance,

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2010
Vojislav Jovanovic
Abstract Tolerance is the so-called "Holy Grail" of transplantation but achieving this state is proving a major challenge, particularly in the clinical settings. This tolerance state can be induced in rodent models using a variety of maneuvers. This phenomenon is classically characterized by donor specificity (recipients accept a secondary donor-specific allograft but reject third-party allograft) as well as by the absence of chronic rejection lesion. We previously showed that administration and anti-donor anti-class II serum on the day of transplantation induce tolerance to a kidney allograft in the LEW-1W to LEW-1A strain combination. In this study, we used DNA microarrays to compare gene patterns involved in anti-donor anti-class II tolerated or untreated syngeneic kidney transplants in this strain combination. Statistical and non-statistical analyses were combined with ab initio analysis, using the recently developed leader gene approach, to shed new light on this phenomenon. Theoretical and experimental results suggest that tolerance and rejection outcome may be in large part determined by low expression variations of some genes, which can form a core gene network around specific genes such as Rac1, NFKB1, RelA, AKT1, IKBKB, BCL2, BCLX, and CHUK. Through this model, we showed that AKT1 gene, WNT pathway and NO synthesis are strictly connected to each other and may play an important role in kidney tolerance and rejection processes, with AKT1 gene being the center of this complex network of interactions. J. Cell. Biochem. 111: 709,719, 2010. © 2010 Wiley-Liss, Inc. [source]


Immune activation is required for the induction of liver allograft tolerance: Implications for immunosuppressive therapy

LIVER TRANSPLANTATION, Issue 3 2001
G. Alex Bishop
Liver transplants in many animal models are unusual because often they are not rejected even when transplanted across complete major histocompatibility complex barriers without immunosuppression. Their paradoxical behavior is even more obvious when the immune mechanism of acceptance is examined. Instead of acceptance resulting from a lack of immune response to the graft, the opposite occurs, and there is an unusual extensive increase in immune activation in acceptance compared with rejection. This abnormal extensive immune activation is driven by donor leukocytes transferred with the liver and results in death of the recipient cells that would normally reject the transplant. Some forms of immunosuppression inhibit this activation-associated liver transplant tolerance. The significance of these findings and possible means to design future treatment protocols for clinical transplantation that optimize management of liver transplant recipients are discussed. [source]


Regulatory T Cells Are Critical to Tolerance Induction in Presensitized Mouse Transplant Recipients Through Targeting Memory T Cells

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 8 2010
W. Ge
Memory T cells are a significant barrier to induction of transplant tolerance. However, reliable means to target alloreactive memory T cells have remained elusive. In this study, presensitization of BALB/c mice with C57BL/6 skin grafts generated a large number of OX40+CD44hieffector/memory T cells and resulted in rapid rejection of donor heart allografts. Recognizing that anti-OX40L monoclonal antibody (mAb) (,-OX40L) monotherapy prolonged graft survival through inhibition and apoptosis of memory T cells in presensitized recipients, ,-OX40L was added to the combined treatment protocol of LF15,0195 (LF) and anti-CD45RB (,-CD45RB) mAb,a protocol that induced heart allograft tolerance in non-presensitized recipients but failed to induce tolerance in presensitized recipients. Interestingly, this triple therapy restored donor-specific heart allograft tolerance in our presensitized model that was associated with induction of tolerogenic dendritic cells and CD4+CD25+Foxp3+ T regulatory cells (Tregs). Of note, CD25+ T cell depletion in triple therapy recipients prevented establishment of allograft tolerance. In addition, adoptive transfer of donor-primed effector/memory T cells into tolerant recipients markedly reduced levels of Tregs and broke tolerance. Our findings indicated that targeting memory T cells, by blocking OX40 costimulation in presensitized recipients was very important to expansion of Tregs, which proved critical to development of tolerance. [source]


Just How Stable Is Allograft Tolerance?

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 7 2010
R. G. Gill
In some cases, an infection may trigger allograft rejection even after putative regulatory tolerance has been established, raising the question: is allograft tolerance ever really stable? See article by Wang et al on page 1524. [source]


Mast Cell Degranulation Breaks Peripheral Tolerance

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 10 2009
V. C. De Vries
Mast cells (MC) have been shown to mediate regulatory T-cell (Treg)-dependent, peripheral allograft tolerance in both skin and cardiac transplants. Furthermore, Treg have been implicated in mitigating IgE-mediated MC degranulation, establishing a dynamic, reciprocal relationship between MC and Treg in controlling inflammation. In an allograft tolerance model, it is now shown that intragraft or systemic MC degranulation results in the transient loss of Treg suppressor activities with the acute, T-cell dependent rejection of established, tolerant allografts. Upon degranulation, MC mediators can be found in the skin, Treg rapidly leave the graft, MC accumulate in the regional lymph node and the Treg are impaired in the expression of suppressor molecules. Such a dramatic reversal of Treg function and tissue distribution by MC degranulation underscores how allergy may causes the transient breakdown of peripheral tolerance and episodes of acute T-cell inflammation. [source]


B-Cell Immunity in the Context of T-Cell Tolerance after Combined Kidney and Bone Marrow Transplantation in Humans

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 9 2009
F. Porcheray
Five patients with end-stage kidney disease received combined kidney and bone marrow transplants from HLA haploidentical donors following nonmyeloablative conditioning to induce renal allograft tolerance. Immunosuppressive therapy was successfully discontinued in four patients with subsequent follow-up of 3 to more than 6 years. This allograft acceptance was accompanied by specific T-cell unresponsiveness to donor antigens. However, two of these four patients showed evidence of de novo antibodies reactive to donor antigens between 1 and 2 years posttransplant. These humoral responses were characterized by the presence of donor HLA-specific antibodies in the serum with or without the deposition of the complement molecule C4d in the graft. Immunofluorescence staining, ELISA assays and antibody profiling using protein microarrays demonstrated the co-development of auto- and alloantibodies in these two patients. These responses were preceded by elevated serum BAFF levels and coincided with B-cell reconstitution as revealed by a high frequency of transitional B cells in the periphery. To date, these B cell responses have not been associated with evidence of humoral rejection and their clinical significance is still unclear. Overall, our findings showed the development of B-cell allo- and autoimmunity in patients with T-cell tolerance to the donor graft. [source]


An Immunomodulatory Role for Follistatin-Like 1 in Heart Allograft Transplantation

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 11 2008
J. B. Le Luduec
Donor-specific tolerance to heart allografts in the rat can be achieved by donor-specific blood transfusions (DST) before transplantation. We have previously reported that this tolerance is associated with strong leukocyte infiltration, and that host CD8+ T cells and TGF, are required. In order to identify new molecules involved in the induction phase of tolerance, we compared tolerated and rejected heart allografts (suppressive subtractive hybridization) 5 days after transplantation. We identified overexpression of Follistatin-like 1 (FSTL1) transcript in tolerated allografts compared to rejected allografts or syngeneic grafts. We show that FSTL1 is overexpressed during both the induction and maintenance phase of tolerance, and appears to be specific to the tolerance model induced by DST. Analysis of graft-infiltrating cells revealed predominant expression of FSTL1 in CD8+ T cells from tolerated grafts, and depletion of these cells prior to transplantation abrogated FSTL1 expression and heart allograft survival. Moreover, overexpression of FSTL1 by adenovirus gene transfer in vivo significantly prolonged allograft survival in association with inhibition of the proinflammatory cytokines, IL6, IL17 A and IFN,. Taken together, these results suggest that FSTL1 could be an active component of the mechanisms mediating heart allograft tolerance. [source]


Role of IFN, in Allograft Tolerance Mediated by CD4+CD25+ Regulatory T Cells by Induction of IDO in Endothelial Cells

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 11 2007
P. Thebault
Regulatory T cells have been described to specifically accumulate at the site of regulation together with effector T cells and antigen-presenting cells, establishing a state of local immune privilege. However the mechanisms of this interplay remain to be defined. We previously demonstrated, in a fully MHC mismatched rat cardiac allograft combination, that a short-term treatment with a deoxyspergualine analogue, LF15-0195, induces long-term allograft tolerance with a specific expansion of regulatory CD4+CD25+T cells that accumulate within the graft. In this study, we show that following transfer of regulatory CD4+T cells to a secondary irradiated recipient, regulatory CD25+Foxp3+ and CD25+Foxp3, CD4+T cells accumulate at the graft site and induce graft endothelial cell expression of Indoleamine 2, 3-dioxygenase (IDO) by an IFN,-dependent mechanism. Moreover, in vivo transfer of tolerance can be abrogated by blocking IFN, or IDO, and anti-IFN, reduces the survival/expansion of alloantigen-induced regulatory Foxp3+CD4+T cells. Together, our results demonstrate interrelated mechanisms between regulatory CD4+CD25+T cells and the graft endothelial cells in this local immune privilege, and a key role for IFN, and IDO in this process. [source]


Rat Cytomegalovirus Infection Interferes with Anti-CD4 mAb-(RIB 5/2) Mediated Tolerance and Induces Chronic Allograft Damage

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 9 2006
A. Pascher
In order to assess the role of heterologous immunity on tolerance induction (TI) by signal 1 modification, the influence of rat cytomegalovirus infection (RCMVI) on TI by a non-depleting monoclonal anti-CD4 mAb (monoclonal antibody) (RIB 5/2) in a rat kidney transplant (KTx) model was investigated. Orthotopic rat KTx (Dark Agouty (DA) , Lewis (LEW)) was performed after TI with RIB 5/2 [10 mg/kg body weight (BW); day ,1, 0, 1, 2, 3; i.p. (intraperitoneal route)]. RCMVI (5 × 10E5 Plaque forming units [PFU] i.p.) was simultaneously conducted to KTx, 50 days after KTx, and 14 days before and after KTx. RIB 5/2 induced robust allograft tolerance even across the high-responder strain barrier. RCMVI broke RIB 5/2-induced tolerance regardless of the time of RCMVI but did not induce acute graft failure during the 120 days follow-up. RCMVI induced a significant chronic deterioration of allograft function (p < 0.01) and enhanced morphological signs of chronic allograft damage (p < 0.05). Cellular infiltrates and major histo-compatibility complex (MHC)-expression were more pronounced (p < 0.05) in the infected groups. RCMVI induced not only RCMV-specific T-cell response but also enhanced the frequency of alloreactive T cells. RCMV interferes with anti-CD4 mAb-induced tolerance and leads to chronic allograft damage. The data we presented suggest a potentially important role of viral infections and their prophylaxis in clinical TI protocols. [source]


Rationale and timeliness for IL-1,-targeted therapy to reduce allogeneic organ injury at procurement and to diminish risk of rejection after transplantation

CLINICAL TRANSPLANTATION, Issue 3 2010
Alan A. Wanderer
Wanderer AA. Rationale and timeliness for IL-1,-targeted therapy to reduce allogeneic organ injury at procurement and to diminish risk of rejection after transplantation. Clin Transplant 2010: 24: 307,311. © 2010 John Wiley & Sons A/S. Abstract:, Ischemia-reperfusion injury (IRI) involving allograft transplantation and procured organs may in part be induced by stimulation of a newly described innate pro-inflammatory immune system (i.e., NALP-3-inflammasome), which can cause secretion of IL-1, and subsequent neutrophilic inflammation. Ischemia and/or hypoxia/anoxia can induce anaerobic metabolism with metabolic acidosis and subsequent development of danger signals known to stimulate IL-1, secretion from the NALP-3 inflammasome. Observations from IRI studies and hereditary auto-inflammatory syndromes with NALP-3 inflammasome mutations suggest that IL-1, secretion can induce robust neutrophilic inflammation that is responsive to IL-1, targeted therapy. Based on these observations and data from transplantation studies, it may be timely to consider commercially available IL-1, targeted biologic therapy to improve allograft tolerance and viability of procured organs. [source]