Home About us Contact | |||
Gold Deposit (gold + deposit)
Selected AbstractsVariations in Chemical Composition of Clay Minerals and Magnetic Susceptibility of Hydrothermally Altered Rocks in the Hishikari Epithermal Gold Deposit, SW Kyushu, JapanRESOURCE GEOLOGY, Issue 1 2008Hiroyasu Murakami Abstract Hydrothermal alteration, involving chiefly chlorite and illite, is extensively distributed within host rocks of the Pleistocene Hishikari Lower Andesites (HLA) and the Cretaceous Shimanto Supergroup (SSG) in the underground mining area of the Hishikari epithermal gold deposit, Kagoshima, Japan. Approximately 60% of the mineable auriferous quartz-adularia veins in the Honko vein system occur in sedimentary rocks of the SSG, whereas all the veins of the Yamada vein system occur in volcanic rocks of the HLA. Variations in the abundance and chemical composition of hydrothermal minerals and magnetic susceptibility of the hydrothermally altered rocks of the HLA and SSG were analyzed. In volcanic rocks of the HLA, hydrothermal minerals such as quartz, chlorite, adularia, illite, and pyrite replaced primary minerals. The amount of hydrothermal minerals in the volcanic rocks including chlorite, adularia, illite, and pyrite as well as the altered and/or replaced pyroxenes and plagioclase phenocrysts increases toward the veins in the Honko vein system. The vein-centered variation in mineral assemblage is pronounced within up to 25 m from the veins in the peripheral area of the Honko vein system, whereas it is not as apparent in the Yamada vein system. The hydrothermal minerals in sandstone of the SSG occur mainly as seams less than a few millimeters thick and are sporadically observed in halos along the veins and/or the seams. The alteration halos in sandstone of the SSG are restricted to within 1 m of the veins. In the peripheral area of the Honko vein system, chlorite in volcanic rocks is characterized by increasing in Al in its tetrahedral layer and the Fe/Fe + Mg ratio toward the veins, while illite in volcanic rocks has relatively low K and a restricted range of Fe/Fe + Mg ratios. Temperature estimates derived from chlorite geothermometry rise toward the veins within the volcanic rocks. The magnetic susceptibility of tuff breccia of the HLA varies from 21 to less than 0.01 × 10,3 SI within a span of 40 m from the veins and has significant variation relative to that of andesite (27,0.06 × 10,3 SI). The variation peripheral to the Honko vein system correlates with an increase in the abundance of hematite pseudomorphs after magnetite, the percentage of adularia and chlorite with high Fe/Fe + Mg ratios, and the degree of plagioclase alteration with decreasing distance to the veins. In contrast, sedimentary rocks of the SSG maintain a consistent magnetic susceptibility across the alteration zone, within a narrow range from 0.3 to 0.2 × 10,3 SI. Magnetic susceptibility of volcanic rocks of the HLA, especially tuff breccia, could serve as an effective exploration tool for identifying altered volcanic rocks. [source] Geology, Wall-rock Alteration and Vein Paragenesis of the Bilimoia Gold Deposit, Kainantu Metallogenic Region, Papua New GuineaRESOURCE GEOLOGY, Issue 3 2007Joseph Onglo Espi Abstract The Bilimoia deposit (2.23 Mt, 24 g/t Au), located in the eastern Central Mobile Belt of mainland Papua New Guinea, is composed of fault-hosted, NW,NNW-trending Irumafimpa,Kora and Judd,Upper Kora Au-quartz veins hosted by Middle,Late Triassic basement that was metamorphosed to medium-grade greenschist facies between Middle,Late Triassic and Early,Middle Jurassic. Mineralizing fluids were introduced during crustal thickening, rapid uplift, change of plate motions from oblique to orthogonal compression, active faulting and S3 and S4 events in an S1,S4 deformation sequence. The Bilimoia deposit is spatially and temporally related to I-type, early intermediate to felsic and late mafic intrusions emplaced in Late Miocene (9,7 Ma). Hydrothermal alteration and associated mineralization is divided into 10 main paragenetic stages: (1) chlorite,epidote-selvaged quartz,calcite,specularite vein; (2) local quartz,illite,pyrite alteration; (3) quartz,sericite,mariposite,fuchsite,pyrite wall-rock alteration that delimits the bounding shears; (4) finely banded, colloform-, crustiform- and cockade-textured and drusy quartz ± early wolframite ± late adularia; (5) hematite; (6) pyrite; (7) quartz ± amethyst-base metal sulfides; (8) quartz,chalcopyrite,bornite,Sn and Cu sulfides,Au tellurides and Te ± Bi ± Ag ± Cu ± Pb phases; (9) Fe ± Mn carbonates; and (10) supergene overprint. Fluid inclusions in stage 4 are characterized by low salinity (0.9,5.4 wt% NaCl equivalent), aqueous,carbonic fluids with total homogenization temperatures ranging from 210 to 330°C. Some of the inclusions that homogenized between 285 and 330°C host coexisting liquid- and vapor-rich (including carbonic) phases, suggesting phase separation. Fluid inclusions in quartz intergrown with wolframite have low salinity (0.9,1.2 wt% NaCl equivalent), aqueous,carbonic fluids at 240,260°C, defining the latter's depositional conditions. The ore fluids were derived from oxidized magmatic source initially contaminated by reduced basement rocks. Wall-rock alteration and involvement of circulating meteoric waters were dominant during the first three stages and early part of stage 4. Stage 5 hematite was deposited as a result of stage 4 phase separation or entrainment of oxygenated groundwater. Gold is associated with Te- and Bi-bearing minerals and mostly precipitated as gold-tellurides during stage 8. Gold deposition occurred below 350°C due to a change in the sulfidation and oxidation state of the fluids, depressurization and decreasing temperature and activities of sulfur and tellurium. Bisulfides are considered to be the main Au-transporting complexes. The Bilimoia deposit has affinities that are similar to many gold systems termed epizonal orogenic and intrusion-related. The current data allow us to classify the Bilimoia deposit as a fault-controlled, metamorphic-hosted, intrusion-related mesothermal to low sulfidation epithermal quartz,Au,Te,Bi vein system. [source] Invisible Gold from the Hishikari Epithermal Gold Deposit, Japan: Implication for Gold Distribution and DepositionRESOURCE GEOLOGY, Issue 2 2005Nobutaka Shimada Abstract. The presence of invisible gold was confirmed in arsenian pyrite from the Hishikari epithermal gold deposit, Kagoshima, Japan, by means of EPMA and SIMS analyses. The relative concentration of invisible gold may be positively correlated with As contents (0.01 to 10.37 wt%) of fine-grained arsenian pyrite which commonly occurs in the auriferous quartz veins. Although arsenian pyrite occurs widely in any mineralization stage with electrum and other sulfide, sulfosalts, selenide or telluride minerals, arsenian pyrites having higher As contents accompanied by invisible gold occur dominantly in the middle stage of fine-adularia-quartz and in the late stage of coarse-quartz rather than in the early stage of columnar-adularia. [source] Rare Earth Element and Trace Element Features of Gold-bearing Pyrite in the Jinshan Gold Deposit, Jiangxi ProvinceACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2010Guangzhou MAO Abstract: Jinshan gold deposit is located in northeastern Jiangxi, South China, which is related to the ductile shear zone. It has a gold reserve of more than 200 tons, with 80% of gold occurring in pyrite. The ,REE of gold-bearing pyrite is as higher as 171.664 ppm on average, with relatively higher light rare earth elements (LREE; 159.556 ppm) and lower HREE (12.108 ppm). The ,LREE/,HREE ratio is 12.612 and (La/Yb)N is 11.765. These indicate that pyrite is rich in LREE. The (La/Sm)N ratio is 3.758 and that of (Gd/Yb)N is 1.695. These are obvious LREE fractionations. The rare earth element (REE) distribution patterns show obvious Eu anomaly with average ,Eu values of 0.664, and ,Ce anomalies of 1.044. REE characteristics are similar to those of wall rocks (regional metamorphic rocks), but different from those of the Dexing granodiorite porphyry and Damaoshan biotite granite. These features indicate that the ore-forming materials in the Jinshan gold deposit derived from the wall rocks, and the ore-forming fluids derived from metamorphic water. The Co/Ni ratio (average value 0.38) of pyrite suggests that the Jinshan gold deposit formed under a medium,low temperature. It is inferred from the values of high-field strength elements, LREE, Hf/Sm, Nb/La, and Th/La of the pyrite that the ore-forming fluids of the Jinshan gold deposit derived from metamorphic water with Cl>F. [source] Geology and Genesis of the Superlarge Jinchang Gold Deposit, NE ChinaACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 4 2008JIA Guozhi Abstract The superlarge Jinchang gold deposit is located in the joint area between the Taipingling uplift and the Laoheishan depression of the Xingkai Block in both eastern Jilin and eastern Heilongjiang Province. Wall rocks of the gold deposits are the Neoproterozoic Huangsong Group of metamorphic rocks. Yanshanian magmatism in this region can be divided into 5 phases, the diorite, the graphic granite, the granite, the granite porphyry and the diorite porphyrite, which resulted in the magmatic domes and cryptoexplosive breecia chimney followed by large-scale hydrothermal alteration. Gold mineralization is closely related to the fourth and fifth phase of magmatism. According to the occurrences, gold ores can be subdivided into auriferous pyritized quartz vein, auriferous quartz-pyrite vein, auriferous polymetallic sulfide quartz vein and auriferous pyritized calcite vein. The ages of the gold deposit are ranging from 122.53 to 119.40 Ma. The ore bodies were controlled by a uniform tectono-magmatic hydrothermal alteration system that the ore-forming materials were deep derived from and the ore-forming fluids were dominated by magmatic waters with addition of some atmospheric water in the later phase of mineralization. Gold mineralization took place in an environment of medium to high temperatures and medium pressures. Ore-forming fluids were the K+ -Na+ -Ca2+ -Cl, -SO42- type and characterized by medium salinity or a slightly higher, weak alkaline and weak reductive. Au in the ore-forming fluids was transported as complexes of [Au (HS)2],, [AuCl2],, [Au(CO2)], and [Au(HCO3)2],. Along with the decline of temperatures and pressures, the ore-forming fluids varied from acidic to weak acidic and then to weak alkaline, which resulted in the dissociation of the complex and finally the precipitation of the gold. [source] U-Pb SHRIMP Dating of Zircon from Quartz Veins of the Yangshan Gold Deposit in Gansu Province and Its Geological SignificanceACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2004QI Jinzhong Abstract, The Yangshan gold deposit is a super-large fine-grained disseminated gold deposit located in southern Gansu Province. Its metallogenic age has been determined by using the cathodoluminescence image and ion probe U-Pb dating techniques. It is found that zircons from quartz veinlet of the fine-grained disseminated gold ore show characters of magmatic origin with prism idiomorphism, oscillatory zoning and dominant Th/U ratios of 0.5,1.5. Three main populations of zircons are obtained, giving average 206Pb/238U ages of 197.6±1.7 Ma, 126.9±3.2 Ma and 51.2±1.3 Ma respectively. The first age corresponds to the K-Ar age of the plagiogranite dike, while the latter two ages indicate that buried Cretaceous and Tertiary intrusives exist in the orefield, suggesting that the Yangshan gold deposit was genetically related to the three magmatic hydrothermal activities. By contrast, zircons from coarse gold-bearing quartz vein in the mining area are much older than the host rock, indicating that the vein was formed earlier and was not contaminated by later magmatic fluids. It is concluded that the coupling of multiperiodic hydrothermal activities in the mining area has contributed a lot to mineralization of the Yangshan gold deposit. [source] Characteristics and Genesis of the Aktubaik Gold Deposit in Altay, XinjiangACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2000DONG Yongguan Abstract, The Aktubaik gold deposit lies in the Altay middle-high mountains area, Xinjiang, hosted by the Palaeo- and Mesoproterozoic Xemirxek Group. It is the first gold deposit found in Precambrian rocks in Altay. The deposit is controlled by the NW-trending fracture-alteration zone, in which rocks have been strongly altered and bleached. The main wall-rock alterations include silicification, sericitization (muscovitization), carbonation, pyritization and tourmalinization. Several gold mineralization zones of this type have been found in the study area. The dominant gold mineral is native gold, which is distributed very unevenly, so special methods such as peeling and bulk sampling are required in exploration. The discovery of this gold deposit has laid a foundation for gold exploration in Precambrian rocks in the Altay middle-high mountains area, Xinjiang. [source] Catalytic Effect on Silver Electrodeposition of Gold Deposited on Carbon ElectrodesELECTROANALYSIS, Issue 19 2004Alfredo de, Escosura-Muñiz Abstract A new methodology, based on silver electrocatalytic deposition and designed to quantify gold deposited onto carbon paste electrode (CPE) and glassy carbon electrode (GCE), has been developed in this work. Silver (prepared in 1.0,M NH3) electrodeposition at ,0.13,V occurs only when gold is previously deposited at an adequate potential on the electrode surface for a fixed period of time. When a CPE is used as working electrode, an adequate oxidation of gold is necessary. This oxidation is carried out in both 0.1,M NaOH and 0.1,M H2SO4 at oxidation potentials. When a GCE is used as working electrode, the oxidation steps are not necessary. Moreover, a cleaning step in KCN, which removes gold from electrode surface, is included. To obtain reproducibility in the analytical signal, the surface of the electrodes must be suitably pretreated; this electrodic pretreatment depends on the kind of electrode used as working electrode. Low detection limits (5.0×10,10,M) for short gold deposition times (10,min for CPE and 5,min for GCE) were achieved with this novel methodology. Finally, sodium aurothiomalate can be quantified using silver electrocatalytic deposition and GCE as working electrode. Good linear relationship between silver anodic stripping peak and aurothiomalate concentration was found from 5.0×10,10,M to 1.0×10,8,M. [source] Genesis and Age Constraints on Gold Deposits of the Daerae Mine, Sangju Area, Central-Northern Sobaegsan Massif, KoreaRESOURCE GEOLOGY, Issue 3 2001Seong, Taek YUN Abstract: Gold mineralization of the Daerae mine represents the first recognized example of the Jurassic gold mineralization in the Sangju area, Korea. It occurs as a single stage of quartz veins that fill fault fractures in Precambrian gneiss of the central-northern Sobaegsan Massif. The mineralogical characteristics of quartz veins, such as the simple mineralogy and relatively gold-rich (65,72 atomic % Au) nature of electrum, as well as the CO2,rich and low salinity nature of fluid inclusions, are consistent with the ,mesothermal-type' gold deposits previously recognized in the Youngdong area (about 50 km southwest of the Sangju area). Ore fluids were evolved mainly through CO2 immiscibility at temperatures between about 250 and 325 C. Vein sulfides characteristically have negative sulfur isotopic values (,1.9 to +0.2 %), which have been very rarely reported in South Korea, and possibly indicate the derivation of sulfur from an ilmenite-series granite melt. The calculated O and H isotopic compositions of hydrothermal fluids at Daerae (,18Owater = +5.2 to +5.9 %; ,Dwater = ,59 to ,67 %) are very similar to those from the Youngdong area, and indicate the important role of magmatic water in gold mineralization. The 40Ar,39Ar age dating of a pure alteration sericite sample yields a high-temperature plateau age of 188.3 0.1 Ma, indicating an early Jurassic age for the gold mineralization at Daerae. The lower temperature Ar-Ar plateau defines an age of 158.4 2.0 Ma (middle Jurassic), interpreted as reset by a subsequent thermal effect after quartz vein formation. The younger plateau age is the same as the previously reported K-Ar ages (145,171 Ma) for the other ,mesothermal,type' gold deposits in the Youngdong and Jungwon areas, Korea, which are too young in view of the new Jurassic Ar-Ar plateau age (around 188 Ma). [source] Mineral Paragenesis of the Lepanto Copper and Gold and the Victoria Gold Deposits, Mankayan Mineral District, PhilippinesRESOURCE GEOLOGY, Issue 2 2001Rene Juna R. CLAVERIA Abstract: Mineral paragenesis of the alteration, ore and gangue minerals of the Lepanto epithermal copper-gold deposit and the Victoria gold deposit, Mankayan Mineral District, Northern Luzon, Philippines, is discussed. The principal ore minerals of the Lepanto copper-gold deposit are enargite and luzonite, with significant presence of tennantite-tetrahedrite, chalcopyrite, sphalerite, galena, native gold/electrum and gold-silver tellurides. Pervasive alteration zonations are commonly observed from silicification outward to advanced argillic then to propylitic zone. The ore mineralogy of the Lepanto copper-gold deposit suggests high fS2 in the early stages of mineralization corresponding to the deposition of the enargite-luzonite-pyrite assemblage. Subsequent decrease in the fS2 formed the chalcopyrite-tennantite-pyrite assemblage. An increase in the fS2 of the fluids with the formation of the covellite-digenite-telluride assemblage caused the deposition of native gold/electrum and gold-silver tellurides. The principal ore minerals of the Victoria gold deposit are sphalerite, galena, chalcopyrite, tetrahedrite and native gold/electrum. The alteration halos are relatively narrow and in an outward sequence from the ore, silica alteration grades to illitic-argillic alteration, which in turn grades to propylitic alteration. The Victoria gold mineralization has undergone early stages of silica supersaturation leading to quartz deposition. Vigorous boiling increased the pH of the fluids that led to the deposition of sulfides and carbonates. The consequent decrease in H2S precipitated the gold. Gypsum and anhydrite mainly occur as overprints that cut the carbonate-silica stages. The crosscutting and overprinting relationships of the Victoria quartz-gold-base metal veins on the Lepanto copper-gold veins manifest the late introduction of near neutral pH hydrothermal fluids. [source] Horizontal Strain Rate in Relation to Vein Formation of the Hishikari Gold Deposits, Southern Kyushu, JapanRESOURCE GEOLOGY, Issue 1 2001Tadakazu UTO Abstract: The Hishikari deposits comprise the Honko (Main), Yamada, and Sanjin deposits. The horizontal strain in the direction (approx. N40°W normal to the general NE-SW strike of the Hishikari vein system was calculated, based on the measured total vein widths to the distance along three crosscuts. Veins were assumed to accompany no significant fault displacement in the calculation. Veins in the eastern and the middle parts of the Honko-Sanjin deposits spatially occupy 3. 2% and 1. 3%, respectively, and veins in the Yamada deposit occupy 6. 7%. Significant local variation of strain is observed in some areas. Reported K-Ar ages on adularia-quartz veins indicate the duration of vein opening to be 2. 6 × 105 yr in the Honko-Sanjin deposits and 5. 9 × 105 yr in the Yamada deposit. Horizontal strain rates were calculated to be 5. 0,12 × 10 -8 yr -1through the Hishikari deposits. The calculated strain rates at the Hishikari deposits are roughly comparable to the regional horizontal strain rate in the Recent. Widespread extensional movement in southern Kyushu seems to have been able to provide sufficient strain for the formation of the Hishikari deposits, rather than contribution of local movements. [source] Sulfur Isotope Study and Re-examination of Ore Mineral Assemblage of the Hol Kol and the Tul Mi Chung Skarn-type Copper,Gold Deposits of the Suan Mining District, Korean PeninsulaRESOURCE GEOLOGY, Issue 4 2000Akira Imai Abstract: Ore specimens collected by the late Professor Takeo Watanabe from the Hol Kol and the Tul Mi Chung deposits, Suan mining district, Korean peninsula, were examined. In addition, measurements of sulfur isotopic ratio of ores and preliminary fluid inclusion microthermometry were carried out. Ores from the New orebody of the Hol Kol deposit consist mainly of bornite, wittichenite and chalcopyrite presently, which exhibit lamellae intergrowth texture, associated with native bismuth and electrum. Bismuthian bornite solid solution is considered to be a principal initial phases, while native bismuth was nucleated as molten bismuth melt initially. The occurrence of cubanite, miharaite, carrollite, siegenite, hessite and geikielite are recognized from the New orebody. Ores from the Eastern orebody of the Hol Kol deposit consist chiefly of chalcopyrite, occasionally associated with trace amounts of pyrrhotite, pyrite, bismuthinite and rare tellurobismuthite, while an ore specimen from the Western orebody consists mainly of sphalerite associated with chalcopyrite, pyrite and galena. Ores from the Tul Mi Chung deposit consist mainly of chalcopyrite and pyrite, occasionally associated with magnetite, sphalerite, galena and rare molybdenite. Some portions of magnetite are revealed to be silician magnetite. Sulfur fugacity is supposed to be below the stability field of bismuthinite in the New orebody. A reducing condition is suggested by the occurrence of geikielite without Fe3+ content. The sulfur and oxygen fugacities for the Eastern and Western orebodies of the Hol Kol deposit and for the Tul Mi Chung deposit were higher than the New orebody of the Hol Kol deposit. On the other hand, the Suan granite (porphyritic granodiorite) and the Chil Sing Dai granite (biotite granite porphyry) from the Hol Kol area can be classified as weakly magnetic magnetite-series. Polyphase fluid inclusions are observed in gangue diopside associated with Cu ore of two specimens. The dissolution temperatures of daughter crystals are 394±26°C and 442±45°C, while the disappearing temperatures of vapor bubble were 475±25°C and > 500°C. Highly saline fluids were responsible for the mineralization at the Hol Kol deposit. The ,34S values of ore sulfides of the Hol Kol and the Tul Mi Chung deposit range from +11. 5% to +16. 1%, having anomalous lower values mainly from the Tul Mi Chung deposit. Such anomalous lower 634S values can be caused by isotopic fractionation against oxidized sulfur species. The ,34S value of bulk sulfur in the ore solutions responsible for the Hol Kol and the Tul Mi Chung deposit is estimated to be +13.5±2.5,. [source] Magmatic Gold Mineralization in the Western Qinling Orogenic Belt: Geology and Metallogenesis of the Baguamiao, Liba and Xiaogouli Gold DepositsACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2004FENG Jianzhong Abstract, The superlarge Baguamiao, large Liba and Xiaogouli gold deposits represent three typical gold deposits different from the Carlin type in the western Qinling Orogenic Belt. Based on Ar-Ar dating of quartz from ores, U-Pb dating of single zircon from granite, tracing of H and O isotopes and studies on the mineralogy and texture of spots and bleached alteration developed in wall rocks, this paper focuses the relations between gold deposits and granite to clarify the origin of gold deposits and the metallogenesis in the tectonic evolution of the Qinling Orogenic Belt. The comprehensive studies show that the age of the granite (148.1,244 Ma) is identical with that of the gold deposits (131.91,232.56 Ma). It is suggested that the granite has close temporal, spatial and genetic relationship with the gold deposits. The granite provides a heat source, water source and considerable amount of ore-forming material. Finally, it is concluded that the orogeny by collision, emplacement of the granite and positioning of the gold deposits represent a successive process. Both the granite and gold deposits resulted from the syn-orogeny and post-orogeny tectonic evolution. [source] A Metallogenic Model of Gold Deposits of the Jiaodong Granite-Greenstone BeltACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 4 2003DENG Jun Abstract, An analysis of trace elements and isotopic geochemistry suggest that the ore-forming materials of gold deposits in the Jiaodong granite-greenstone belt have multiple sources, especially the mantle source. Seismic wave, magnetic and gravity fields show that the crust-mantle structure and its coupling mechanism are the fundamental dynamic causes for the exchange and accumulation of materials and energy in the metallogenic system. Considering the evolution history of the structural setting, the tectono-metallogenic dynamics model of the area can be summarized as follows: (1) occurrence of the greenstone belt during the Archean-Proterozoic,the embryonic form of Au-source system; (2) stable tectonic setting in the Paleozoic,an intermittence in gold mineralization; (3) intensive activation and reformation of the greenstone belt in the Mesozoic,tectono-mineralization and tectono-diagensis; (4) posthumous structural activity in the Cenozoic,destruction of orebodies in the later stage. In the middle and late Indosinian, the Tancheng-Lujiang fault zone cut deeply into the upper mantle so that the ore-bearing fluids migrated to higher layers through the crust-mantle interaction, resulting in alteration and mineralization. [source] Geophysical exploration for interlayer slip breccia gold deposits: example from Pengjiakuang gold deposit, Shandong Province, ChinaGEOPHYSICAL PROSPECTING, Issue 2 2004Z. Qingdong ABSTRACT Interlayer slipping breccia-type gold deposit , a new type of gold deposit, defined recently in the northern margin of the Jiaolai Basin, Shandong Province, China , occurs in interlayer slip faults distributed along the basin margin. It has the features of large orebody thickness (ranging from 14 m to 46 m, with an average thickness of 30 m), shallow embedding (0,50 m thickness of cover), low tenor of gold ore (ranging from 3 g/t to 5 g/t), easy mining and ore dressing. This type of gold deposit has promising metallogenic forecasting and potential for economic exploitation. A ground gamma-ray survey in the Pengjiakuang gold-ore district indicates that the potassium/thorium ratio is closely related to the mineralization intensity, i.e. the larger the potassium/thorium ratio, the higher the mineralization. The gold mineralized alteration zone was defined by a potassium/thorium ratio of 0.35. A seismic survey confirms the location of the top and bottom boundaries and images various features within the Pengjiakuang gold mineralization belt. The gold-bearing shovel slipped belt dips to the south at an angle of 50,55° at the surface and 15,20° at depth. The seismic profile is interpreted in terms of a structural band on the seismic section characterized by a three-layered model. The upper layer is represented by weakly discontinuous reflections that represent the overlying conglomerates. A zone of stronger reflections representing the interlayer slip fault (gold-bearing mineralized zone) is imaged within the middle of the section, while the strongest reflections are in the lower part of the section and represent metamorphic rocks at depth. At the same time, the seismic reflection survey confirms the existence of a granite body at depth, indicating that ore-forming fluids may be related to the granite. A CSAMT survey showed that the gold-bearing mineralized zone is a conductive layer and contains a low-resistivity anomaly ranging from 2 ,m to 200 ,m. [source] Preparation and Certification of High-Grade Gold Ore Reference Materials (GAu 19-22)GEOSTANDARDS & GEOANALYTICAL RESEARCH, Issue 1 2001Tiexin Gu materiau de référence certifié; gisement d 'or,GAu 19-22,IGGE,valeurs certifiées Two types of gold deposit with both good homogeneity and a high-grade of gold were selected to prepare four gold ore reference materials (GAu-19,GAu-20,GAu-21 and GAu-22) by the Institute of Geophysical and Geochemical Exploration (IGGE),China. Seven laboratories participated in the certification programme. Volumetric methods for GAu19-21 and atomic absorption spectrometry for GAu-22 were used for the homogeneity testing,the coefficient of variation being found to be less than 3%. After sample digestion and preconcentration,the samples were analysed by flame atomic absorption spectrometry (AAS),colorimetry,neutron activation analysis (NAA)and volumetric analysis. The certified values for the gold concentration in GAu19-22 are 18.3 ,g g -1, 32.3 ,g g -1, 53.0 ,g g -1 and 5.72 ,g g -1,respectively. Deux types de gisements d'or, présentant à la foisune bonne homogénéité et une teneur élevée en or, ont été sélectionnés par l'Institut d 'Exploration Géophysique et Géochimique de Chine (IGGE)afin de préparer quatre matériaux de référence pour l'or (GAu-19,GAu-20,GAu-21 et Gau-22). Sept laboratoires ont participé au programme de certification. Des méthodes volumétriques (GAu-19-21)et de spectrométrie par absorption atomique (GAu 22)ont été utilisées pour tester l'homogénéité de ces échantillons;les coefficients de variation se sont révélés inférieurs à 3%.Après la mise en solution et la préconcentration des échantillons,ceux-ci ont eté analysés par spectrométrie d 'absorption atomique (AAS), colorimétrie,activation neutronique (NAA)et analyse volumétrique.Les valeurs certifiées pour la concentration en or de GAu19-22 sont respectivement de 18.3 ,g.g -1,32.3 ,g g -1, 53.0 ,g g -1 et 5.72 ,g g -1. [source] Variations in Chemical Composition of Clay Minerals and Magnetic Susceptibility of Hydrothermally Altered Rocks in the Hishikari Epithermal Gold Deposit, SW Kyushu, JapanRESOURCE GEOLOGY, Issue 1 2008Hiroyasu Murakami Abstract Hydrothermal alteration, involving chiefly chlorite and illite, is extensively distributed within host rocks of the Pleistocene Hishikari Lower Andesites (HLA) and the Cretaceous Shimanto Supergroup (SSG) in the underground mining area of the Hishikari epithermal gold deposit, Kagoshima, Japan. Approximately 60% of the mineable auriferous quartz-adularia veins in the Honko vein system occur in sedimentary rocks of the SSG, whereas all the veins of the Yamada vein system occur in volcanic rocks of the HLA. Variations in the abundance and chemical composition of hydrothermal minerals and magnetic susceptibility of the hydrothermally altered rocks of the HLA and SSG were analyzed. In volcanic rocks of the HLA, hydrothermal minerals such as quartz, chlorite, adularia, illite, and pyrite replaced primary minerals. The amount of hydrothermal minerals in the volcanic rocks including chlorite, adularia, illite, and pyrite as well as the altered and/or replaced pyroxenes and plagioclase phenocrysts increases toward the veins in the Honko vein system. The vein-centered variation in mineral assemblage is pronounced within up to 25 m from the veins in the peripheral area of the Honko vein system, whereas it is not as apparent in the Yamada vein system. The hydrothermal minerals in sandstone of the SSG occur mainly as seams less than a few millimeters thick and are sporadically observed in halos along the veins and/or the seams. The alteration halos in sandstone of the SSG are restricted to within 1 m of the veins. In the peripheral area of the Honko vein system, chlorite in volcanic rocks is characterized by increasing in Al in its tetrahedral layer and the Fe/Fe + Mg ratio toward the veins, while illite in volcanic rocks has relatively low K and a restricted range of Fe/Fe + Mg ratios. Temperature estimates derived from chlorite geothermometry rise toward the veins within the volcanic rocks. The magnetic susceptibility of tuff breccia of the HLA varies from 21 to less than 0.01 × 10,3 SI within a span of 40 m from the veins and has significant variation relative to that of andesite (27,0.06 × 10,3 SI). The variation peripheral to the Honko vein system correlates with an increase in the abundance of hematite pseudomorphs after magnetite, the percentage of adularia and chlorite with high Fe/Fe + Mg ratios, and the degree of plagioclase alteration with decreasing distance to the veins. In contrast, sedimentary rocks of the SSG maintain a consistent magnetic susceptibility across the alteration zone, within a narrow range from 0.3 to 0.2 × 10,3 SI. Magnetic susceptibility of volcanic rocks of the HLA, especially tuff breccia, could serve as an effective exploration tool for identifying altered volcanic rocks. [source] Orogenic Gold Mineralization in the Qolqoleh Deposit, Northwestern IranRESOURCE GEOLOGY, Issue 3 2007Farhang Aliyari Abstract The Qolqoleh gold deposit is located in the northwestern part of the Sanandai-Sirjan Zone, northwest of Iran. Gold mineralization in the Qolqoleh deposit is almost entirely confined to a series of steeply dipping ductile,brittle shear zones generated during Late Cretaceous,Tertiary continental collision between the Afro-Arabian and the Iranian microcontinent. The host rocks are Mesozoic volcano-sedimentary sequences consisting of felsic to mafic metavolcanics, which are metamorphosed to greenschist facies, sericite and chlorite schists. The gold orebodies were found within strong ductile deformation to late brittle deformation. Ore-controlling structure is NE,SW-trending oblique thrust with vergence toward south ductile,brittle shear zone. The highly strained host rocks show a combination of mylonitic and cataclastic microstructures, including crystal,plastic deformation and grain size reduction by recrystalization of quartz and mica. The gold orebodies are composed of Au-bearing highly deformed and altered mylonitic host rocks and cross-cutting Au- and sulfide-bearing quartz veins. Approximately half of the mineralization is in the form of dissemination in the mylonite and the remainder was clearly emplaced as a result of brittle deformation in quartz,sulfide microfractures, microveins and veins. Only low volumes of gold concentration was introduced during ductile deformation, whereas, during the evident brittle deformation phase, competence contrasts allowed fracturing to focus on the quartz,sericite domain boundaries of the mylonitic foliation, thus permitting the introduction of auriferous fluid to create disseminated and cross-cutting Au-quartz veins. According to mineral assemblages and alteration intensity, hydrothermal alteration could be divided into three zones: silicification and sulfidation zone (major ore body); sericite and carbonate alteration zone; and sericite,chlorite alteration zone that may be taken to imply wall-rock interaction with near neutral fluids (pH 5,6). Silicified and sulfide alteration zone is observed in the inner parts of alteration zones. High gold grades belong to silicified highly deformed mylonitic and ultramylonitic domains and silicified sulfide-bearing microveins. Based on paragenetic relationships, three main stages of mineralization are recognized in the Qolqoleh gold deposit. Stage I encompasses deposition of large volumes of milky quartz and pyrite. Stage II includes gray and buck quartz, pyrite and minor calcite, sphalerite, subordinate chalcopyrite and gold ores. Stage III consists of comb quartz and calcite, magnetite, sphalerite, chalcopyrite, arsenopyrite, pyrrhotite and gold ores. Studies on regional geology, ore geology and ore-forming stages have proved that the Qolqoleh deposit was formed in the compression,extension stage during the Late Cretaceous,Tertiary continental collision in a ductile,brittle shear zone, and is characterized by orogenic gold deposits. [source] Genetic Environment of the Intrusion-related Yuryang Au-Te Deposit in the Cheonan Metallogenic Province, KoreaRESOURCE GEOLOGY, Issue 2 2006Sang Joon Pak Abstract. The Yuryang gold deposit, comprising a Te-bearing Au-Ag vein mineralization, is located in the Cheonan area of the Republic of Korea. The deposit is hosted in Precambrian gneiss and closely related to pegmatite. The mineralized veins display massive quartz textures, with weak alteration adjacent to the veins. The ore mineralization is simple, with a low Ag/Au ratio of 1.5:1, due to the paucity of Ag-phases. Ore mineralization took place in two different mineral assemblages with paragenetic time; early Fe-sulfide mineralization and late Fe-sulfide and Au-Te mineralization. The early Fe-sulfide mineralization (pyrite + sphalerite) occurred typically along the vein margins, and the subsequent Au-Te mineralization is characterized by fracture fillings of galena, sphalerite, pyrrhotite, Te-bearing minerals (petzite, altaite, hessite and Bi-Te mineral) and electrum. Fluid inclusions characteristically contain CO2 and can be classified into four types (Ia, Ib, IIa and IIb) according to the phase behavior. The pressure corrected temperatures (,500d,C) indicate that the deposit was formed at a distinctively high temperature from fluids with moderate to low salinity (<12 wt% equiv. NaCl) and CH4 (1,22 mole %). The sphalerite geo-barometry yield an estimated pressure about 3.5 ,2.1 kbar. The dominant ore-deposition mechanisms were CO2 effervescence and concomitant H2S volatilization, which triggered sulfidation and gold mineralization. The measured and calculated isotopic compositions of fluids (,18OH2O = 10.3 to 12.4 %o; ,DH2O = -52 to -77 %o) may indicate that the gold deposition originated from S-type magmatic waters. The physicochemical conditions observed in the Yuryang gold deposit indicate that the Jurassic gold deposits in the Cheonan area, including the Yuryang gold deposit are compatible with deposition of the intrusion-related Au-Te veins from deeply sourced fluids generated by the late Jurassic Daebo magmatism. [source] Invisible Gold from the Hishikari Epithermal Gold Deposit, Japan: Implication for Gold Distribution and DepositionRESOURCE GEOLOGY, Issue 2 2005Nobutaka Shimada Abstract. The presence of invisible gold was confirmed in arsenian pyrite from the Hishikari epithermal gold deposit, Kagoshima, Japan, by means of EPMA and SIMS analyses. The relative concentration of invisible gold may be positively correlated with As contents (0.01 to 10.37 wt%) of fine-grained arsenian pyrite which commonly occurs in the auriferous quartz veins. Although arsenian pyrite occurs widely in any mineralization stage with electrum and other sulfide, sulfosalts, selenide or telluride minerals, arsenian pyrites having higher As contents accompanied by invisible gold occur dominantly in the middle stage of fine-adularia-quartz and in the late stage of coarse-quartz rather than in the early stage of columnar-adularia. [source] Mineral Paragenesis of the Lepanto Copper and Gold and the Victoria Gold Deposits, Mankayan Mineral District, PhilippinesRESOURCE GEOLOGY, Issue 2 2001Rene Juna R. CLAVERIA Abstract: Mineral paragenesis of the alteration, ore and gangue minerals of the Lepanto epithermal copper-gold deposit and the Victoria gold deposit, Mankayan Mineral District, Northern Luzon, Philippines, is discussed. The principal ore minerals of the Lepanto copper-gold deposit are enargite and luzonite, with significant presence of tennantite-tetrahedrite, chalcopyrite, sphalerite, galena, native gold/electrum and gold-silver tellurides. Pervasive alteration zonations are commonly observed from silicification outward to advanced argillic then to propylitic zone. The ore mineralogy of the Lepanto copper-gold deposit suggests high fS2 in the early stages of mineralization corresponding to the deposition of the enargite-luzonite-pyrite assemblage. Subsequent decrease in the fS2 formed the chalcopyrite-tennantite-pyrite assemblage. An increase in the fS2 of the fluids with the formation of the covellite-digenite-telluride assemblage caused the deposition of native gold/electrum and gold-silver tellurides. The principal ore minerals of the Victoria gold deposit are sphalerite, galena, chalcopyrite, tetrahedrite and native gold/electrum. The alteration halos are relatively narrow and in an outward sequence from the ore, silica alteration grades to illitic-argillic alteration, which in turn grades to propylitic alteration. The Victoria gold mineralization has undergone early stages of silica supersaturation leading to quartz deposition. Vigorous boiling increased the pH of the fluids that led to the deposition of sulfides and carbonates. The consequent decrease in H2S precipitated the gold. Gypsum and anhydrite mainly occur as overprints that cut the carbonate-silica stages. The crosscutting and overprinting relationships of the Victoria quartz-gold-base metal veins on the Lepanto copper-gold veins manifest the late introduction of near neutral pH hydrothermal fluids. [source] Rare Earth Element and Trace Element Features of Gold-bearing Pyrite in the Jinshan Gold Deposit, Jiangxi ProvinceACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2010Guangzhou MAO Abstract: Jinshan gold deposit is located in northeastern Jiangxi, South China, which is related to the ductile shear zone. It has a gold reserve of more than 200 tons, with 80% of gold occurring in pyrite. The ,REE of gold-bearing pyrite is as higher as 171.664 ppm on average, with relatively higher light rare earth elements (LREE; 159.556 ppm) and lower HREE (12.108 ppm). The ,LREE/,HREE ratio is 12.612 and (La/Yb)N is 11.765. These indicate that pyrite is rich in LREE. The (La/Sm)N ratio is 3.758 and that of (Gd/Yb)N is 1.695. These are obvious LREE fractionations. The rare earth element (REE) distribution patterns show obvious Eu anomaly with average ,Eu values of 0.664, and ,Ce anomalies of 1.044. REE characteristics are similar to those of wall rocks (regional metamorphic rocks), but different from those of the Dexing granodiorite porphyry and Damaoshan biotite granite. These features indicate that the ore-forming materials in the Jinshan gold deposit derived from the wall rocks, and the ore-forming fluids derived from metamorphic water. The Co/Ni ratio (average value 0.38) of pyrite suggests that the Jinshan gold deposit formed under a medium,low temperature. It is inferred from the values of high-field strength elements, LREE, Hf/Sm, Nb/La, and Th/La of the pyrite that the ore-forming fluids of the Jinshan gold deposit derived from metamorphic water with Cl>F. [source] Geology and Genesis of the Superlarge Jinchang Gold Deposit, NE ChinaACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 4 2008JIA Guozhi Abstract The superlarge Jinchang gold deposit is located in the joint area between the Taipingling uplift and the Laoheishan depression of the Xingkai Block in both eastern Jilin and eastern Heilongjiang Province. Wall rocks of the gold deposits are the Neoproterozoic Huangsong Group of metamorphic rocks. Yanshanian magmatism in this region can be divided into 5 phases, the diorite, the graphic granite, the granite, the granite porphyry and the diorite porphyrite, which resulted in the magmatic domes and cryptoexplosive breecia chimney followed by large-scale hydrothermal alteration. Gold mineralization is closely related to the fourth and fifth phase of magmatism. According to the occurrences, gold ores can be subdivided into auriferous pyritized quartz vein, auriferous quartz-pyrite vein, auriferous polymetallic sulfide quartz vein and auriferous pyritized calcite vein. The ages of the gold deposit are ranging from 122.53 to 119.40 Ma. The ore bodies were controlled by a uniform tectono-magmatic hydrothermal alteration system that the ore-forming materials were deep derived from and the ore-forming fluids were dominated by magmatic waters with addition of some atmospheric water in the later phase of mineralization. Gold mineralization took place in an environment of medium to high temperatures and medium pressures. Ore-forming fluids were the K+ -Na+ -Ca2+ -Cl, -SO42- type and characterized by medium salinity or a slightly higher, weak alkaline and weak reductive. Au in the ore-forming fluids was transported as complexes of [Au (HS)2],, [AuCl2],, [Au(CO2)], and [Au(HCO3)2],. Along with the decline of temperatures and pressures, the ore-forming fluids varied from acidic to weak acidic and then to weak alkaline, which resulted in the dissociation of the complex and finally the precipitation of the gold. [source] U-Pb SHRIMP Dating of Zircon from Quartz Veins of the Yangshan Gold Deposit in Gansu Province and Its Geological SignificanceACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2004QI Jinzhong Abstract, The Yangshan gold deposit is a super-large fine-grained disseminated gold deposit located in southern Gansu Province. Its metallogenic age has been determined by using the cathodoluminescence image and ion probe U-Pb dating techniques. It is found that zircons from quartz veinlet of the fine-grained disseminated gold ore show characters of magmatic origin with prism idiomorphism, oscillatory zoning and dominant Th/U ratios of 0.5,1.5. Three main populations of zircons are obtained, giving average 206Pb/238U ages of 197.6±1.7 Ma, 126.9±3.2 Ma and 51.2±1.3 Ma respectively. The first age corresponds to the K-Ar age of the plagiogranite dike, while the latter two ages indicate that buried Cretaceous and Tertiary intrusives exist in the orefield, suggesting that the Yangshan gold deposit was genetically related to the three magmatic hydrothermal activities. By contrast, zircons from coarse gold-bearing quartz vein in the mining area are much older than the host rock, indicating that the vein was formed earlier and was not contaminated by later magmatic fluids. It is concluded that the coupling of multiperiodic hydrothermal activities in the mining area has contributed a lot to mineralization of the Yangshan gold deposit. [source] Characteristics and Genesis of the Aktubaik Gold Deposit in Altay, XinjiangACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2000DONG Yongguan Abstract, The Aktubaik gold deposit lies in the Altay middle-high mountains area, Xinjiang, hosted by the Palaeo- and Mesoproterozoic Xemirxek Group. It is the first gold deposit found in Precambrian rocks in Altay. The deposit is controlled by the NW-trending fracture-alteration zone, in which rocks have been strongly altered and bleached. The main wall-rock alterations include silicification, sericitization (muscovitization), carbonation, pyritization and tourmalinization. Several gold mineralization zones of this type have been found in the study area. The dominant gold mineral is native gold, which is distributed very unevenly, so special methods such as peeling and bulk sampling are required in exploration. The discovery of this gold deposit has laid a foundation for gold exploration in Precambrian rocks in the Altay middle-high mountains area, Xinjiang. [source] Geophysical exploration for interlayer slip breccia gold deposits: example from Pengjiakuang gold deposit, Shandong Province, ChinaGEOPHYSICAL PROSPECTING, Issue 2 2004Z. Qingdong ABSTRACT Interlayer slipping breccia-type gold deposit , a new type of gold deposit, defined recently in the northern margin of the Jiaolai Basin, Shandong Province, China , occurs in interlayer slip faults distributed along the basin margin. It has the features of large orebody thickness (ranging from 14 m to 46 m, with an average thickness of 30 m), shallow embedding (0,50 m thickness of cover), low tenor of gold ore (ranging from 3 g/t to 5 g/t), easy mining and ore dressing. This type of gold deposit has promising metallogenic forecasting and potential for economic exploitation. A ground gamma-ray survey in the Pengjiakuang gold-ore district indicates that the potassium/thorium ratio is closely related to the mineralization intensity, i.e. the larger the potassium/thorium ratio, the higher the mineralization. The gold mineralized alteration zone was defined by a potassium/thorium ratio of 0.35. A seismic survey confirms the location of the top and bottom boundaries and images various features within the Pengjiakuang gold mineralization belt. The gold-bearing shovel slipped belt dips to the south at an angle of 50,55° at the surface and 15,20° at depth. The seismic profile is interpreted in terms of a structural band on the seismic section characterized by a three-layered model. The upper layer is represented by weakly discontinuous reflections that represent the overlying conglomerates. A zone of stronger reflections representing the interlayer slip fault (gold-bearing mineralized zone) is imaged within the middle of the section, while the strongest reflections are in the lower part of the section and represent metamorphic rocks at depth. At the same time, the seismic reflection survey confirms the existence of a granite body at depth, indicating that ore-forming fluids may be related to the granite. A CSAMT survey showed that the gold-bearing mineralized zone is a conductive layer and contains a low-resistivity anomaly ranging from 2 ,m to 200 ,m. [source] Orogenic Gold Mineralization in the Qolqoleh Deposit, Northwestern IranRESOURCE GEOLOGY, Issue 3 2007Farhang Aliyari Abstract The Qolqoleh gold deposit is located in the northwestern part of the Sanandai-Sirjan Zone, northwest of Iran. Gold mineralization in the Qolqoleh deposit is almost entirely confined to a series of steeply dipping ductile,brittle shear zones generated during Late Cretaceous,Tertiary continental collision between the Afro-Arabian and the Iranian microcontinent. The host rocks are Mesozoic volcano-sedimentary sequences consisting of felsic to mafic metavolcanics, which are metamorphosed to greenschist facies, sericite and chlorite schists. The gold orebodies were found within strong ductile deformation to late brittle deformation. Ore-controlling structure is NE,SW-trending oblique thrust with vergence toward south ductile,brittle shear zone. The highly strained host rocks show a combination of mylonitic and cataclastic microstructures, including crystal,plastic deformation and grain size reduction by recrystalization of quartz and mica. The gold orebodies are composed of Au-bearing highly deformed and altered mylonitic host rocks and cross-cutting Au- and sulfide-bearing quartz veins. Approximately half of the mineralization is in the form of dissemination in the mylonite and the remainder was clearly emplaced as a result of brittle deformation in quartz,sulfide microfractures, microveins and veins. Only low volumes of gold concentration was introduced during ductile deformation, whereas, during the evident brittle deformation phase, competence contrasts allowed fracturing to focus on the quartz,sericite domain boundaries of the mylonitic foliation, thus permitting the introduction of auriferous fluid to create disseminated and cross-cutting Au-quartz veins. According to mineral assemblages and alteration intensity, hydrothermal alteration could be divided into three zones: silicification and sulfidation zone (major ore body); sericite and carbonate alteration zone; and sericite,chlorite alteration zone that may be taken to imply wall-rock interaction with near neutral fluids (pH 5,6). Silicified and sulfide alteration zone is observed in the inner parts of alteration zones. High gold grades belong to silicified highly deformed mylonitic and ultramylonitic domains and silicified sulfide-bearing microveins. Based on paragenetic relationships, three main stages of mineralization are recognized in the Qolqoleh gold deposit. Stage I encompasses deposition of large volumes of milky quartz and pyrite. Stage II includes gray and buck quartz, pyrite and minor calcite, sphalerite, subordinate chalcopyrite and gold ores. Stage III consists of comb quartz and calcite, magnetite, sphalerite, chalcopyrite, arsenopyrite, pyrrhotite and gold ores. Studies on regional geology, ore geology and ore-forming stages have proved that the Qolqoleh deposit was formed in the compression,extension stage during the Late Cretaceous,Tertiary continental collision in a ductile,brittle shear zone, and is characterized by orogenic gold deposits. [source] Genetic Environment of the Intrusion-related Yuryang Au-Te Deposit in the Cheonan Metallogenic Province, KoreaRESOURCE GEOLOGY, Issue 2 2006Sang Joon Pak Abstract. The Yuryang gold deposit, comprising a Te-bearing Au-Ag vein mineralization, is located in the Cheonan area of the Republic of Korea. The deposit is hosted in Precambrian gneiss and closely related to pegmatite. The mineralized veins display massive quartz textures, with weak alteration adjacent to the veins. The ore mineralization is simple, with a low Ag/Au ratio of 1.5:1, due to the paucity of Ag-phases. Ore mineralization took place in two different mineral assemblages with paragenetic time; early Fe-sulfide mineralization and late Fe-sulfide and Au-Te mineralization. The early Fe-sulfide mineralization (pyrite + sphalerite) occurred typically along the vein margins, and the subsequent Au-Te mineralization is characterized by fracture fillings of galena, sphalerite, pyrrhotite, Te-bearing minerals (petzite, altaite, hessite and Bi-Te mineral) and electrum. Fluid inclusions characteristically contain CO2 and can be classified into four types (Ia, Ib, IIa and IIb) according to the phase behavior. The pressure corrected temperatures (,500d,C) indicate that the deposit was formed at a distinctively high temperature from fluids with moderate to low salinity (<12 wt% equiv. NaCl) and CH4 (1,22 mole %). The sphalerite geo-barometry yield an estimated pressure about 3.5 ,2.1 kbar. The dominant ore-deposition mechanisms were CO2 effervescence and concomitant H2S volatilization, which triggered sulfidation and gold mineralization. The measured and calculated isotopic compositions of fluids (,18OH2O = 10.3 to 12.4 %o; ,DH2O = -52 to -77 %o) may indicate that the gold deposition originated from S-type magmatic waters. The physicochemical conditions observed in the Yuryang gold deposit indicate that the Jurassic gold deposits in the Cheonan area, including the Yuryang gold deposit are compatible with deposition of the intrusion-related Au-Te veins from deeply sourced fluids generated by the late Jurassic Daebo magmatism. [source] Genesis and Age Constraints on Gold Deposits of the Daerae Mine, Sangju Area, Central-Northern Sobaegsan Massif, KoreaRESOURCE GEOLOGY, Issue 3 2001Seong, Taek YUN Abstract: Gold mineralization of the Daerae mine represents the first recognized example of the Jurassic gold mineralization in the Sangju area, Korea. It occurs as a single stage of quartz veins that fill fault fractures in Precambrian gneiss of the central-northern Sobaegsan Massif. The mineralogical characteristics of quartz veins, such as the simple mineralogy and relatively gold-rich (65,72 atomic % Au) nature of electrum, as well as the CO2,rich and low salinity nature of fluid inclusions, are consistent with the ,mesothermal-type' gold deposits previously recognized in the Youngdong area (about 50 km southwest of the Sangju area). Ore fluids were evolved mainly through CO2 immiscibility at temperatures between about 250 and 325 C. Vein sulfides characteristically have negative sulfur isotopic values (,1.9 to +0.2 %), which have been very rarely reported in South Korea, and possibly indicate the derivation of sulfur from an ilmenite-series granite melt. The calculated O and H isotopic compositions of hydrothermal fluids at Daerae (,18Owater = +5.2 to +5.9 %; ,Dwater = ,59 to ,67 %) are very similar to those from the Youngdong area, and indicate the important role of magmatic water in gold mineralization. The 40Ar,39Ar age dating of a pure alteration sericite sample yields a high-temperature plateau age of 188.3 0.1 Ma, indicating an early Jurassic age for the gold mineralization at Daerae. The lower temperature Ar-Ar plateau defines an age of 158.4 2.0 Ma (middle Jurassic), interpreted as reset by a subsequent thermal effect after quartz vein formation. The younger plateau age is the same as the previously reported K-Ar ages (145,171 Ma) for the other ,mesothermal,type' gold deposits in the Youngdong and Jungwon areas, Korea, which are too young in view of the new Jurassic Ar-Ar plateau age (around 188 Ma). [source] PEOPLING THE VICTORIAN GOLDFIELDS: FROM BOOM TO BUST, 1851,1901AUSTRALIAN ECONOMIC HISTORY REVIEW, Issue 2 2010Charles Fahey demography; migration; mining; Victoria Victoria experienced a surge of migration after the discovery of gold in 1851. I explore the social and geographic background of migrants lured to the colony by opportunities opened up by gold mining. When alluvial gold was exhausted, the skills of migrants enabled them to exploit the more difficult deep lead and quartz reef gold deposits and to establish cities and towns. Urban growth was encouraged by high marriage and birth rates in the 1860s. In the last two decades of the nineteenth century goldfields communities generally suffered economic and demographic declines. [source] |