Goblet Cell Hyperplasia (goblet + cell_hyperplasia)

Distribution by Scientific Domains


Selected Abstracts


Blockade of CCR4 in a humanized model of asthma reveals a critical role for DC-derived CCL17 and CCL22 in attracting Th2 cells and inducing airway inflammation

ALLERGY, Issue 7 2009
F. Perros
Background:, As Th2 type lymphocytes orchestrate the cardinal features of allergic asthma, inhibiting their recruitment to the lungs could be of therapeutic benefit. Although human Th2 cells express the CCR4 chemokine receptor and increased production of CCR4 ligands has been found in asthmatic airways, studies in animals have reached contradictory conclusions on whether blocking this pathway would be beneficial. Objective:, As a lack of efficacy might be due to differences between mouse and man, we readdressed this question using a humanized severe combined immunodeficiency model of asthma. Methods:, Mice received peripheral blood mononuclear cells from house dust mite (HDM) allergic asthmatic patients and then underwent bronchial challenge with HDM. Results:, This resulted in marked allergic inflammation and bronchial hyper-reactivity. Administration of CCR4 blocking antibody abolished the airway eosinophilia, goblet cell hyperplasia, IgE synthesis and bronchial hyperreactivity. In this chimeric system, human CD11c+ dendritic cells (DCs) were the predominant source of CCR4 ligands, suggesting that DC-derived chemokines attract Th2 cells. In separate experiments using human DCs, in vitro exposure to HDM of DCs from HDM allergic patients but not healthy controls caused CCL17 and CCL22 release that resulted in chemoattraction of polarized human Th2 cells in a CCR4-dependent way. Conclusions:, Taken together, our data provide proof of concept that CCR4 blockade inhibits the salient features of asthma and justify further clinical development of CCR4 antagonists for this disease. [source]


Expulsion of the gastrointestinal cestode, Hymenolepis diminuta by tolerant rats: evidence for mediation by a Th2 type immune enhanced goblet cell hyperplasia, increased mucin production and secretion

PARASITE IMMUNOLOGY, Issue 1 2007
R. A. WEBB
SUMMARY The processes underlying expulsion of Hymenolepis diminuta in rats are not known. Expression levels of mRNAs of several cytokines revealed a Th2 response that differed between worm infection levels. IL-4 protein levels decreased while IL-13 levels increased in a 50-worm infection by 30 dpi; the converse was seen with a five-worm infection. A negative correlation was found between IL-4 or IL-13 mRNA expression and worm biomass, between IL-13 protein levels and worm number or worm biomass, and between IL-4 protein levels and worm biomass in 50-worm infections. A negative correlation between IL-4 mRNA or protein expression and worm biomass was observed with five-worm infections. A strong correlation between Muc2 mRNA expression and decreased worm number or biomass in a 50-worm infection was observed. Muc2 protein, goblet cell numbers and mucin decreased in a 50-worm infection by 20 days post-infection. These changes were not seen with five-worm infections where worms are not expelled. The data show that rats infected with 50 H. diminuta mount a Th2 response leading to high levels of IL-13, increased goblet cell numbers and increased mucin2 production and release. The mucus traps the worms, which are progressively expelled from the small intestine. [source]


Immune-mediated alteration in gut physiology and its role in host defence in nematode infection

PARASITE IMMUNOLOGY, Issue 8-9 2004
W. I. Khan
SUMMARY Activation of the mucosal immune system of the gastrointestinal tract in nematode infection results in altered intestinal physiology, which includes changes in intestinal motility and mucus production. These changes are considered to be under direct immunological control rather than a non-specific consequence of the inflammatory reaction to the infective agent. However, little is known about the immunological basis for the changes in intestinal physiology accompanying nematode infection, or the precise role of these changes in host defence, which remains an important area to explore. In this review we describe the mechanisms by which the immune response to nematode infection influences the changes in two major cells of intestinal physiology, namely smooth muscle and goblet cells, and how these changes in intestinal physiology contribute to the host defence. Data clearly demonstrate that the T helper (Th) 2 type immune response generated by nematode infection plays an important role in the development of infection-induced intestinal muscle hypercontractility and goblet cell hyperplasia and that these immune-mediated changes in intestinal physiology are associated with worm expulsion. These observations strongly suggest that intestinal muscle contractility, goblet cell hyperplasia and worm expulsion share a common immunological basis and may be causally related. These data not only provide insights into host defence in nematode infection in the context of muscle function and goblet cell response, but also have broad implications in elucidating the pathophysiology of a wide range of gastrointestinal disorders associated with altered gut physiology. [source]


Pathological airway remodelling in inflammation

THE CLINICAL RESPIRATORY JOURNAL, Issue 2010
Gunilla Westergren-Thorsson
Abstract Introduction:, Airway remodelling refers to a wide pattern of patophysiological mechanisms involving smooth muscle cell hyperplasia, increase of activated fibroblasts and myofibroblasts with deposition of extracellular matrix. In asthma, it includes alterations of the epithelial cell layer with goblet cell hyperplasia, thickening of basement membranes, peri-bronchial and peri-broncheolar fibrosis. Moreover, airway remodelling occurs not only in asthma but also in several pulmonary disorders such as chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis and systemic sclerosis. Asthma treatment with inhaled corticosteroids does not fully prevent airway remodelling and thus have restricted influence on the natural course of the disease. Objectives:, This review highlights the role of different fibroblast phenotypes and potential origins of these cells in airway remodelling. Results:, During inflammatory conditions, such as asthma, fibroblasts can differentiate into an active, more contractile phenotype termed myofibroblast, with expression of stress fibres and alpha-smooth muscle actin. The origin of myofibroblasts has lately been debated, and three sources have been identified: recruitment and differentiation of resident tissue fibroblasts; fibrocytes , circulating progenitor cells; and epithelial,mesenchymal transition. Conclusion:, It is clear that airway mesenchymal cells, including fibroblasts/myofibroblasts, are more dynamic in terms of differentiation and origin than has previously been recognised. Considering that these cells are key players in the remodelling process, it is of utmost importance to characterise specific markers for the various fibroblast phenotypes and to explore factors that drive the differentiation to develop future diagnostic and therapeutic tools for asthma patients. Please cite this paper as: Westergren-Thorsson G, Larsen K, Nihlberg K, Andersson-Sjöland A, Hallgren O, Marko-Varga G and Bjermer L. Pathological airway remodelling in inflammation. Clin Respir J 2010; 4 (Suppl. 1): 1,8. [source]


Prolonged Allergen Challenge in Murine Nasal Allergic Rhinitis: Nasal Airway Remodeling and Adaptation of Nasal Airway Responsiveness

THE LARYNGOSCOPE, Issue 5 2007
Muneo Nakaya MD
Abstract Background: Nasal airway remodeling exists in allergic rhinitis, but it appears to be far less extensive than in asthma. However, there has been little study about nasal airway remodeling and no study using mice models. It has been reported that airway hyperresponsiveness decreased after prolonged allergen challenge in a chronic murine asthma model together with the progression of remodeling. However, there has been no study of the relation of remodeling and airway responsiveness in nasal allergy. Therefore, we have undertaken this investigation to characterize nasal airway structural changes after prolonged allergen challenge and to examine the relationship between nasal airway hyperresponsivity and remodeling. Methods: We prepared murine allergic rhinitis for ovalbumin. Mice were subsequently challenged three times a week with ovalbumin from day 19 to days 53, 88, and 130. We examined allergen-induced nasal symptoms and objective nasal hyperresponsiveness using the enhanced pause system. Moreover, the pathologic changes were investigated after allergen challenge. Results: The extended allergen challenge protocol caused significant nasal airway remodeling. Specifically, remodeling was characterized by goblet cell hyperplasia and deposition of collagen in the submucosal area. Allergen-induced nasal hyperresponsiveness was first increased but gradually decreased in nasal symptoms and Penh after prolonged allergen challenge. Conclusions: We have demonstrated that a remodeling of nasal mucosa in a murine allergic rhinitis model prolonged allergen exposure. Moreover, prolonged allergen exposure induced a reduction of nasal hyperresponsiveness together with a progression of nasal remodeling. [source]


Role of STAT6 and SMAD2 in a model of chronic allergen exposure: a mouse strain comparison study

CLINICAL & EXPERIMENTAL ALLERGY, Issue 1 2009
J. A. Hirota
Summary Background Asthma is a disease characterized by variable and reversible airway obstruction and is associated with airway inflammation, airway remodelling (including goblet cell hyperplasia, increased collagen deposition and increased smooth muscle mass) and increased airway responsiveness. It is believed that airway inflammation plays a critical role in the development of airway remodelling, with IL-13 and TGF-,1 pathways being strongly associated with the disease progression. Mouse models of asthma are capable of recapitulating some components of asthma and have been used to look at both IL-13 and TGF-,1 pathways, which use STAT6 and SMAD2 signalling molecules, respectively. Objectives Using brief and chronic models of allergen exposure, we utilized BALB/c and C57Bl/6 to explore the hypothesis that observed differences in responses to allergen between these mouse strains will involve fundamental differences in IL-13 and TGF-,1 responses. Methods The following outcome measurements were performed: airway physiology, bronchoalveolar lavage cell counts/cytokine analysis, histology, immunoblots and gene expression assays. Results We demonstrate in BALB/c mice an IL-13-dependent phosphorylation of STAT6, nuclear localized in inflammatory cells, which is associated with indices of airway remodelling and development of airway dysfunction. In BALB/c mice, phosphorylation of SMAD2 is delayed relative to STAT6 activation and also involves an IL-13-dependent mechanism. In contrast, despite an allergen-induced increase in IL-4, IL-13 and eosinophils, C57Bl/6 demonstrates a reduced and distinct pattern of phosphorylated STAT6, no SMAD2 phosphorylation changes and fail to develop indices of remodelling or changes in airway function. Conclusion The activation of signalling pathways and nuclear translocation of signalling molecules downstream of IL-13 and TGF-,1 further support the central role of these molecules in the pathology and dysfunction in animal models of asthma. Activation of signalling pathways downstream from IL-13 and TGF-,1 may be more relevant in disease progression than elevations in airway inflammation alone. [source]


Neurokinin-1 receptor activation induces reactive oxygen species and epithelial damage in allergic airway inflammation

CLINICAL & EXPERIMENTAL ALLERGY, Issue 12 2007
J. Springer
Summary Background An induction of reactive oxygen species (ROS) is characteristic for inflammation but the exact pathways have not been identified for allergic airway diseases so far. Objective The aim of this study was to characterize the role of the tachykinin NK-1 receptor on ROS production during allergen challenge and subsequent inflammation and remodelling. Methods Precision-cut lung slices of ovalbumin (OVA)-sensitized mice were cultivated and ROS-generation in response to OVA challenge (10 ,g/mL) was examined by the 2,,7,-dichloroflourescein-diacetate method. Long-term ROS effects on epithelial proliferation were investigated by 5-bromo-2,-deoxyuridine incorporation (72 h). In vivo, the results were validated in OVA-sensitized animals which were treated intra-nasally with either placebo, the tachykinin neurokinin 1 (NK-1) receptor antagonist SR 140333 or the anti-oxidant N -acetylcystein (NAC) before allergen challenge. Inflammatory infiltration and remodelling were assessed 48 h after allergen challenge. Results ROS generation was increased by 3.7-fold, which was inhibited by SR 140333. [Sar9,Met11(O2)]-Substance P (5 nm) caused a tachykinin NK-1 receptor-dependent fourfold increase in ROS generation. Epithelial proliferation was decreased by 68% by incubation with [Sar9,Met11(O2)]-SP over 72 h. In-vivo, treatment with SR 140333 and NAC reduced epithelial damage (91.4% and 76.8% vs. placebo, respectively, P<0.01) and goblet cell hyperplasia (67.4% and 50.1% vs. placebo, respectively, P<0.05), and decreased inflammatory cell influx (65.3% and 45.3% vs. placebo, respectively, P<0.01). Conclusion Allergen challenge induces ROS in a tachykinin NK-1 receptor-dependent manner. Inhibition of the tachykinin NK-1 receptor reduces epithelial damage and subsequent remodelling in vivo. Therefore, patients may possibly benefit from treatment regime that includes radical scavengers or tachykinin NK-1 receptor antagonists. [source]


Transgenic mice expressing the T cell antigen receptor specific for an immunodominant epitope of a major allergen of house dust mite develop an asthmatic phenotype on exposure of the airways to allergen

CLINICAL & EXPERIMENTAL ALLERGY, Issue 7 2005
E. R. Jarman
Summary Background Current studies on mechanisms underlying allergen-induced pulmonary inflammation and asthma are hampered by the lack of appropriate physiological in vivo models that reflect the natural route of allergen exposure and sensitization. Objective To generate and phenotype a transgenic mouse strain expressing the T cell receptor (TCR) specific for an immunodominant domain of the major inhalant allergen Dermatophagoides pteronyssinus species of house dust mite (Der p 1), for the development of an in vivo model of allergic asthma. Methods Der p 1 transgenic mice were generated using TCR-,, derived from a CD4+ T cell hybridoma reactive with Der p 1 residues p 110,131. The frequency and functional activity of peripheral T cells were determined and parameters of airway inflammation assessed following allergen challenge of the airways with Der p 1. Results CD4+ T cells are functionally active, exhibiting dose-dependent proliferation and IL-4 production on primary stimulation with Der p 1 or Der p 1, p 110,131 in vitro, independent of in vivo antigen priming. On sensitization of the airways with allergen, in the absence of systemic priming or the application of adjuvants, the TCR transgenic mice develop airway inflammation characterized by a marked lymphocytic and eosinophilic infiltrate with goblet cell hyperplasia and enhanced mucin production. Conclusion The Der p 1 TCR transgenic mice provide a model for investigating the pathophysiological mechanisms of pulmonary inflammation following sensitization by exposure of the airways to allergen and for investigating the mode of action and efficacy of novel immunotherapeutics. [source]


Airway goblet cell hyperplasia in asthma: hypersecretory and anti-inflammatory?

CLINICAL & EXPERIMENTAL ALLERGY, Issue 8 2002
Duncan F. Rogers
First page of article [source]


Mast cell-mediated airway remodelling

CLINICAL & EXPERIMENTAL ALLERGY REVIEWS, Issue 4 2006
Y. Okayama
Summary Airway structural changes (remodelling) in asthma include increased smooth muscle mass, mucus gland hypertrophy, deposition of extracellular matrix components, thickening of reticular basement membrane, and angiogenesis. The extent of remodelling correlates with severity of asthma, and since patients with extensive remodelling may be resistant to steroids therapy, prevention of airway remodelling is a promising therapeutic strategy for curing patients with severe asthma. Mast cells play a pivotal role in allergic inflammatory diseases including asthma and rhinitis. Both early-phase mediators such as tryptase and chymase and late-phase mediators such as cytokines released by mast cells are capable of modulating airway smooth muscle cell function and inducing goblet cell hyperplasia. Nasal remodelling in patients with rhinitis seems far less extensive than that which occurs in bronchi of asthmatic patients. Because cytokine production by smooth muscle cells may partly explain the differences in remodelling at these two sites, further investigation of the interaction between human mast cells and airway smooth muscle cells is required to identify new therapeutic strategies for reducing airway remodelling in asthma. [source]


REVIEW: ,-Secretase Inhibitors for the Treatment of Alzheimer's Disease: The Current State

CNS: NEUROSCIENCE AND THERAPEUTICS, Issue 5 2010
Francesco Panza
SUMMARY Aims: Drugs currently used for the treatment of Alzheimer's disease (AD) partially stabilize patients' symptoms without modifying disease progression. Brain accumulation of oligomeric species of ,-amyloid (A,) peptides, the principal components of senile plaques, is believed to play a crucial role in the development of AD. Based on this hypothesis, huge efforts are being spent to identify drugs able to interfere with proteases regulating A, formation from amyloid precursor protein (APP). This article briefly reviews the profile of ,-secretase inhibitors, compounds that inhibit ,-secretase, the pivotal enzyme that generates A,, and that have reached the clinic. Discussion: Several classes of potent ,-secretase inhibitors have been designed and synthesized. Preclinical studies have indicated that these compounds are able to lower brain A, concentrations and, in some cases, reduce A, plaque deposition in transgenic mouse models of AD. The most developmentally advanced of these compounds is semagacestat, presently in Phase III clinical trials. In animals, semagacestat reduced A, levels in the plasma, cerebrospinal fluid (CSF), and the brain. However, studies have not reported on its cognitive effects. Studies in both healthy volunteers and patients with AD have demonstrated a dose-dependent inhibition of plasma A, levels, and a recent study in healthy subjects demonstrated a robust, dose-dependent inhibition of newly generated A, in the CSF after single oral doses. Conclusions: Unfortunately, ,-secretase inhibitors may cause intestinal goblet cell hyperplasia, thymus atrophy, decrease in lymphocytes, and alterations in hair color, effects associated with the inhibition of the cleavage of Notch, a protein involved in cell development and differentiation. Nevertheless, at least other two promising ,-secretase inhibitors are being tested clinically. This class of drugs represents a major hope to slow the rate of decline of AD. [source]