Global Warming (global + warming)

Distribution by Scientific Domains
Distribution within Life Sciences

Terms modified by Global Warming

  • global warming potential

  • Selected Abstracts


    Variation in Heat-shock Proteins and Photosynthetic Thermotolerance among Natural Populations of Chenopodium album L. from Contrasting Thermal Environments: Implications for Plant Responses to Global Warming

    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 11 2008
    Deepak Barua
    Abstract Production of heat-shock proteins (Hsps) is a key adaptation to acute heat stress and will be important in determining plant responses to climate change. Further, intraspecifc variation in Hsps, which will influence species-level response to global warming, has rarely been examined in naturally occurring plants. To understand intraspecific variation in plant Hsps and its relevance to global warming, we examined Hsp content and thermotolerance in five naturally occurring populations of Chenopodium album L. from contrasting thermal environments grown at low and high temperatures. As expected, Hsp accumulation varied between populations, but this was related more to habitat variability than to mean temperature. Unexpectedly, Hsp accumulation decreased with increasing variability of habitat temperatures. Hsp accumulation also decreased with increased experimental growth temperatures. Physiological thermotolerance was partitioned into basal and induced components. As with Hsps, induced thermotolerance decreased with increasing temperature variability. Thus, populations native to the more stressful habitats, or grown at higher temperatures, had lower Hsp levels and induced thermotolerance, suggesting a greater reliance on basal mechanisms for thermotolerance. These results suggest that future global climate change will differentially impact ecotypes within species, possibly by selecting for increased basal versus inducible thermotolerance. [source]


    Global Warming: Can Existing Reserves Really Preserve Current Levels of Biological Diversity?

    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 3 2006
    Mai-He Li
    Abstract Paleoecological evidence and paleoclimatic records indicate that there was a plant poleward migration in latitude and an upward shift in elevation with increased temperatures after the last glaciation. Recent studies have shown that global warming over the past 100 years has been having a noticeable effect on living systems. Current global warming is causing a poleward and upward shift in the range of many plants and animals. Climate change, in connection with other global changes, is threatening the survival of a wide range of plant and animal species. This raises the question: can existing reserves really preserve current levels of biological diversity in the long term given the present rapid pace of climate change? The present paper deals with this question in the context of the responses of plants and animals to global climate change, based on a literature review. Consequently, we recommend expanding reserves towards the poles and/or towards higher altitudes, to permit species to shift their ranges to keep pace with global warming. (Managing editor: Ya-Qin Han) [source]


    Why I Care About Global Warming

    NEW PERSPECTIVES QUARTERLY, Issue 4 2005
    ARNOLD SCHWARZENEGGER
    No abstract is available for this article. [source]


    Limiting Global Cooling after Global Warming is Over , Differentiating Between Short- and Long-Lived Greenhouse Gases

    OPEC ENERGY REVIEW, Issue 4 2003
    Axel Michaelowa
    Current climate policy does not take into account that, after greenhouse gas emissions have been reduced to an extent that atmospheric concentrations stabilise and then start to fall, natural decay of greenhouse gases will lead to a global cooling phase spanning several centuries. This cooling will lead to damage to humans and ecosystems that depends on the rate of temperature change. Current climate policy should thus concentrate on the reduction of short- and medium-lived greenhouse gases, while exempting long-lived gases. This reduces the cooling rate. Another policy option is to sequester carbon in geological reservoirs that allow controlled release in the future. [source]


    Is There a Global Warming of Patents?

    THE JOURNAL OF WORLD INTELLECTUAL PROPERTY, Issue 1 2008
    Joseph Straus
    The worldwide surge of patent applications has recently been called "global warming of patents". In this article an attempt is made to test this equation with a clearly negative connotation by analyzing the multilayered reasons for that surge and its future perspectives. Solutions are sought for the resulting backlog of some three million worldwide pending patent applications. [source]


    Microwave-Assisted Kolbe-Schmitt Synthesis Using Ionic Liquids or Dimcarb as Reactive Solvents

    CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 11 2009
    A. Stark
    Abstract The activation of relatively inert carbon dioxide as a building block for organic products is of interest from both ecological and chemical points of view. One of the few industrially relevant processes using CO2 is the Kolbe-Schmitt synthesis. Two strategies to obtain the carboxylated product 2,4-dihydroxybenzoic acid from resorcinol are presented: both Dimcarb and hydrogencarbonate- or methylcarbonate-based ionic liquids are employed as reactive solvents in a microwave-assisted reaction. Reaction optimization shows that the ionic liquids are more reactive than Dimcarb. However, Dimcarb offers advantages with regard to ecological aspects, such as the Global Warming and Human Toxicity Potential and the Cumulative Energy Demand, which were assessed as part of the process development. [source]


    Cycle analysis of low and high H2 utilization SOFCs/gas turbine combined cycle for CO2 recovery

    ELECTRONICS & COMMUNICATIONS IN JAPAN, Issue 10 2008
    Takuya Taniuchi
    Abstract Global warming is mainly caused by CO2 emission from thermal power plants, which burn fossil fuel with air. One of the countermeasure technologies to prevent global warming is CO2 recovery from combustion flue gas and the sequestration of CO2 underground or in the ocean. SOFC and other fuel cells can produce high-concentration CO2, because the reformed fuel gas reacts with oxygen electrochemically without being mixed with air, or diluted by N2. Thus, we propose to operate the multistage SOFCs under high utilization of reformed fuel for obtaining high-concentration CO2. In this report, we have estimated the multistage SOFCs' performance considering H2 diffusion and the combined cycle efficiency of multistage SOFC/gas turbine/CO2 recovery power plant. The power generation efficiency of our CO2 recovery combined cycle is 68.5% and the efficiency of conventional SOFC/GT cycle is 57.8% including the CO2 recovery amine process. © 2009 Wiley Periodicals, Inc. Electron Comm Jpn, 91(10): 38,45, 2008; Published online in Wiley InterScience (www.interscience. wiley.com). DOI 10.1002/ecj.10165 [source]


    Temperature dependence of stream benthic respiration in an Alpine river network under global warming

    FRESHWATER BIOLOGY, Issue 10 2008
    V. ACUÑA
    Summary 1. Global warming has increased the mean surface temperature of the Earth by 0.6 °C in the past century, and temperature is probably to increase by an additional 3 °C by 2100. Water temperature has also increased, which in turn can affect metabolic rate in rivers. Such an increase in metabolic rate could alter the role of river networks in the global C cycle, because the fraction of allochthonous organic C that is respired may increase. 2. Laboratory-based incubations at increasing water temperature were used to estimate the temperature dependence of benthic respiration in streams. These experiments were performed on stones taken from seven reaches with different thermal conditions (mean temperature ranging 8,19 °C) within the pre-alpine Thur River network in Switzerland, June,October 2007. 3. The activation energy of respiration in different reaches along the river network (0.53 ± 0.12 eV, n = 94) was similar, indicating that respiration was constrained by the activation energy of the respiratory complex (E = 0.62 eV). Water temperature and the thickness of the benthic biofilm influence the temperature dependence of respiration and our results suggest that an increase of 2.5 °C will increase river respiration by an average of 20 ± 1.6%. [source]


    Climate warming, dispersal inhibition and extinction risk

    GLOBAL CHANGE BIOLOGY, Issue 3 2008
    MANUEL MASSOT
    Abstract Global warming impels species to track their shifting habitats or adapt to new conditions. Both processes are critically influenced by individual dispersal. In many animals, dispersal behaviour is plastic, but how organisms with plastic dispersal respond to climate change is basically unknown. Here, we report the analysis of interannual dispersal change from 16 years of monitoring a wild population of the common lizard, and a 12-year manipulation of lizards' diet intended to disentangle the direct effect of temperature rise on dispersal from its effects on resource availability. We show that juvenile dispersal has declined dramatically over the last 16 years, paralleling the rise of spring temperatures during embryogenesis. A mesoscale model of metapopulation dynamics predicts that in general dispersal inhibition will elevate the extinction risk of metapopulations exposed to contrasting effects of climate warming. [source]


    Environmental warming increases invasion potential of alpine lake communities by imported species

    GLOBAL CHANGE BIOLOGY, Issue 11 2005
    Angela M. Holzapfel
    Abstract Global warming increasingly pressures species to show adaptive migratory responses. We hypothesized that warming increases invasion of alpine lakes by low-elevation montane zooplankton by suppressing native competitors and predators. This hypothesis was tested by conducting a two-factor experiment, consisting of a warming treatment (13 vs. 20°C) crossed with three invasion levels (alpine only, alpine+montane, montane only), in growth chambers over a 28-day period. Warming significantly reduced total consumer biomass owing to the decline of large alpine species, resulting in greater autotrophic abundance. Significant temperature-invasion interactions occurred as warming suppressed alpine zooplankton, while stimulating certain imported species. Herbivorous invaders suppressed functionally similar alpine species while larger native omnivores reduced invasion by smaller taxa. Warming did not affect total invader biomass because imported species thrived under ambient and warmed alpine conditions. Our findings suggest that the adaptability of remote alpine lake communities to global warming is limited by species dispersal from lower valleys, or possibly nearby warmer alpine ponds. [source]


    Global change and carnivore body size: data are stasis

    GLOBAL ECOLOGY, Issue 2 2009
    Shai Meiri
    ABSTRACT Aim, Global warming and other anthropogenic changes to the environment affect many aspects of biology and have often been invoked as causing body size changes in vertebrates. Here we examine a diverse set of carnivore populations in search of patterns in body size change that could reflect global warming (in accord with Bergmann's rule). Location, Global. Methods, We used > 4400 specimens representing 22 carnivore species in 52 populations collected over the last few decades to examine whether size changed with collection date when geography and sex are accounted for. We then examined several factors related to global warming, body mass, diet, and the attributes of the different datasets, to see whether they affect the standardized slope (,) of the size versus time regression. Results, Six of 52 populations we examined show a significant effect of year of collection on body size at the 0.05 probability level. The response of size to global warming does not reflect spatial patterns of size variation, nor do diet or body mass affect tendency of populations to change in body size. Size changes are no more pronounced in populations that have been sampled more recently. However, change, where it occurs, is rapid. Main conclusions, There may be a tendency in the literature to report only cases where recent changes are prevalent. Although in our data only a minority of populations show body size changes, we may see changes accelerating in the future in response to more drastic climatic changes and other anthropogenic changes. [source]


    Climate change and grasslands through the ages: an overview

    GRASS & FORAGE SCIENCE, Issue 2 2007
    L. 't Mannetje
    Summary Change from cool to warm temperatures and vice versa have occurred throughout geological time. During the Jurassic and Cretaceous periods (206,65 million years ago, Ma) the climate was more uniformly warm and moist than at present and tropical rainforests were widespread. Grasses evolved during the Jurassic period and they expanded greatly as the climate differentiated with reduced rainfall and temperatures. C4 -grasses probably arose during the Oligocene period (24,35 Ma). During the Miocene period (23·8,5·3 Ma) grasslands expanded into huge areas (e.g. prairies in the USA, steppe in Eurasia, and pampas and llanos in South America). During the Quaternary period (1·8 Ma till now) some twenty-two different ice ages with periodicities of about 100 000 years occurred. Eighteen-thousand years ago, north-western Europe had a polar climate with tundra vegetation and the Mediterranean region was covered by steppe. During that time Amazonia was so dry that it was covered in extensive areas of savanna and the Sahara expanded rapidly. Only in the last 10 000 years has a closed rainforest covered the Amazonian region again. However, 9000 years ago a brief period of global warming caused excessive rains, which caused the sea and river levels to rise in north-western Europe with tremendous loss of life. The present period of extreme dryness in the Sahara only started some 5000 years ago and then the desert expanded rapidly into the Sahel. Before that the Sahara was covered by steppe. Global warming took place between about ad 900 and about ad 1200 or 1300 just before the Little Ice Age (1550,1700 ad). The article concludes with a description of temperature and vegetation changes that are occurring in Europe at present. It is predicted that C4 -grasses, which are already present in southern Europe, will further expand but that, in the short term, land abandonment will have much more deleterious effects than temperature change due to increased wild fires, loss of biodiversity and desertification. [source]


    Global potential soil erosion with reference to land use and climate changes

    HYDROLOGICAL PROCESSES, Issue 14 2003
    Dawen Yang
    Abstract A GIS-based RUSLE model is employed to study the global soil erosion potential for viewing the present situation, analysing changes over the past century, and projecting future trends with reference to global changes in land use and climate. Scenarios considered in the study include historical, present and future conditions of cropland and climate. This research gives the first overview of the global situation of soil erosion potential considering the previous century as well as the present and future. Present soil erosion potential is estimated to be about 0·38 mm year,1 for the globe, with Southeast Asia found to be the most seriously affected region in the world. It is estimated that nearly 60% of present soil erosions are induced by human activity. With development of cropland in the last century, soil erosion potential is estimated to have increased by about 17%. Global warming might significantly increase the potential for soil erosion, and the regions with the same increasing trend of precipitation and population might face much more serious problems related to soil erosion in the future. Copyright © 2003 John Wiley & Sons, Ltd. [source]


    Global warming affects phenology and voltinism of Lobesia botrana in Spain

    AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 2 2010
    Daniel Martín-Vertedor
    1Climate change is promoting alterations of a very diverse nature in the life cycle of an array of insect species, including changes in phenology and voltinism. In Spain, there is observational evidence that the moth Lobesia botrana Den. & Schiff. (Lep.: Tortricidae), a key vine pest that is usually trivoltine in Mediterranean latitudes, tends to advance spring emergence, displaying a partial fourth additional flight, a fact that is potentially attributable to global warming. 2To verify this hypothesis, local temperatures were correlated with L. botrana phenology in six vine-growing areas of southwestern Spain during the last two decades (1984,2006) by exploiting the database of flight curves obtained with sexual pheromone traps. The dates of second and third flight peaks of the moth were calculated for each area and year and then correlated with both time (years) and local temperatures. 3The results obtained demonstrated a noteworthy trend towards local warming (as a result of global warming) in the last two decades, with mean increases in annual and spring temperatures of 0.9 and 3.0°C, respectively. Therefore, L. botrana phenology has significantly advanced by more than 12 days. Moreover, the phenological advance contributed to increased moth voltinism in 2006 by promoting a complete fourth additional flight, a fact that has never been reported previously to our knowledge in the Iberian Peninsula. 4The potential impact of an earlier phenology and increased voltinism in L. botrana is discussed from an agro-ecological perspective. [source]


    Global warming, Bergmann's rule and body mass , are they related?

    JOURNAL OF ZOOLOGY, Issue 4 2002
    The chukar partridge (Alectoris chukar) case
    Abstract Using museum specimens collected in Israel during the second half of the 20th century, no support was found for the hypothesis that body mass and tarsus length of chukar partridges Alectoris chukar has changed as a result of global warming. Body mass showed fluctuations during the year, reaching a maximum in late winter and spring and a minimum in summer. Bergmann's rule predicts that in warm-blooded animals, races from warm regions will be smaller than races from colder regions, and a wider explanation states that body size is positively related to latitude. Because of its topography and varied climate, Israel provides a unique opportunity to separate partly the effect of latitude from that of ambient temperature, thus testing if Bergmann's rule is related to latitude or to climatic variables. We found that body mass (and marginally also tarsus length) declined significantly with decreasing latitude in accordance with the wider explanation of Bergmann's rule, but ambient temperature explained a much smaller fraction of the variation in body mass than latitude. These results weaken the traditional explanation to Bergmann's rule that a heat conservation mechanism causes the latitudinal size variation. [source]


    Elevation and connectivity define genetic refugia for mountain sheep as climate warms

    MOLECULAR ECOLOGY, Issue 14 2006
    CLINTON W. EPPS
    Abstract Global warming is predicted to affect the evolutionary potential of natural populations. We assessed genetic diversity of 25 populations of desert bighorn sheep (Ovis canadensis nelsoni) in southeastern California, where temperatures have increased and precipitation has decreased during the 20th century. Populations in low-elevation habitats had lower genetic diversity, presumably reflecting more fluctuations in population sizes and founder effects. Higher-elevation habitats acted as reservoirs of genetic diversity. However, genetic diversity was also affected by population connectivity, which has been disrupted by human development. Restoring population connectivity may be necessary to buffer the effects of climate change on this desert-adapted ungulate. [source]


    Climate Change Enhances the Potential Impact of Infectious Disease and Harvest on Tropical Waterfowl

    BIOTROPICA, Issue 4 2009
    Lochran W. Traill
    ABSTRACT Global warming exacerbates threats to biodiversity as ecological systems shift in response to altered climatic conditions. Yet the long-term survival of populations at direct risk from climate change may also be undermined by local factors such as infectious disease or anthropogenic harvest, which leave smaller and more isolated populations increasingly vulnerable to the rapid pace of global change. We review current and future threats to an exemplar tropical waterfowl species, magpie geese Anseranas semipalmata, and focus on the potential synergies between infectious diseases, harvest, and climate change. We outline viral, bacterial, and fungal pathogens likely to cause disease in geese, and give mention to parasites. Further, we elaborate on a previously developed, spatially explicit population viability model to simulate demographic responses to hunting and novel or enhanced disease outbreaks due to climate change. With no harvest, the simulated disease epizootics only threatened metapopulation viability when both mortality rate was high and outbreaks were regular (a threshold response). However, when contemporary site-specific harvest is included as an additive impact, the response to disease severity and probability was linear. We recommend field research to test these hypotheses linking drivers of waterfowl population decline to disease,climate change interactions. [source]


    Native wildlife on rangelands to minimize methane and produce lower-emission meat: kangaroos versus livestock

    CONSERVATION LETTERS, Issue 3 2008
    George R. Wilson
    Abstract Ruminant livestock produce the greenhouse gas methane and so contribute to global warming and biodiversity reduction. Methane from the foregut of cattle and sheep constitutes 11% of Australia's total greenhouse gas emissions (GHG). Kangaroos, on the other hand, are nonruminant forestomach fermenters that produce negligible amounts of methane. We quantified the GHG savings Australia could make if livestock were reduced on the rangelands where kangaroo harvesting occurs and kangaroo numbers increased to 175 million to produce same amount of meat. Removing 7 million cattle and 36 million sheep by 2020 would lower Australia's GHG emissions by 16 megatonnes, or 3% of Australia's annual emissions. However, the change will require large cultural and social adjustments and reinvestment. Trials are underway based on international experiences of managing free-ranging species. They are enabling collaboration between farmers, and if they also show benefits to sustainability, rural productivity, and conservation of biodiversity, they could be expanded to incorporate change on the scale of this article. Farmers have few options to reduce the contribution that livestock make to GHG production. Using kangaroos to produce low-emission meat is an option for the Australian rangelands which would avoid permit fees under Australia's Emissions Trading Scheme, and could even have global application. [source]


    Capitalism and Climate Change: Can the Invisible Hand Adjust the Natural Thermostat?

    DEVELOPMENT AND CHANGE, Issue 6 2009
    Servaas Storm
    Some say the world will end in fire, Some say in ice. From what I've tasted of desire I hold with those who favor fire. But if it had to perish twice, I think I know enough of hate To say that for destruction ice Is also great And would suffice. (Robert Frost, ,Fire and Ice', New Hampshire,1923) ABSTRACT Can climate change be stopped while fossil fuel capitalism remains the dominant system? What has to be done and what has to change to avoid the worst-case consequences of global warming? These questions are debated in the six contributions which follow. This introduction to the debate sets the stage and puts the often widely diverging views in context, distinguishing two axes of debate. The first axis (,market vs. regulation') measures faith in the invisible hand to adjust the natural thermostat. The second axis expresses differences in views on the efficiency and equity implications of climate action. While the contributions do differ along these axes, most authors agree that capitalism's institutions need to be drastically reformed and made fundamentally more equitable. This means a much broader agenda for the climate movement (going beyond carbon trading and technocratic discussion of mitigation options). What is needed for climate stability is a systemic transformation based on growth scepticism, a planned transition to a non-fossil fuel economy, democratic reform, climate justice, and changed global knowledge and corporate and financial power structures. [source]


    Religion and Science: What Is at Stake?

    DIALOG, Issue 3 2007
    Lynne Lorenzen
    Abstract:, "Religion and Science: What Is at Stake" looks at the latest information available on global warming from the International Panel on Climate Change and puts it in the context of the current culture war between progressives and conservatives. We worry that the science will become captive to ideological concerns that are theological, economic, and therefore political. The ideological domination of science may make a sustainable response to global warming even more difficult. It is vitally important that Christian theologians learn enough about the science to be articulate and support the scientists in their endeavors to promote our care of the creation. [source]


    Simulation of the dissolution of weathered versus unweathered limestone in carbonic acid solutions of varying strength

    EARTH SURFACE PROCESSES AND LANDFORMS, Issue 6 2007
    M. J. Thornbush
    Abstract A simulation was undertaken within a climatic chamber to investigate limestone dissolution under varied carbonic acid (H2CO3) strengths as a possible analogue for future increases in atmospheric CO2 arising from global warming. Twenty-eight samples cut from a block of Bath (Box Hill) limestone from Somerville College, Oxford, which had been removed during restoration after 150 years in an urban environment, were weighed and placed in closed bottles of thin plastic containing varying concentrations of H2CO3. Half of the stone samples were derived from exposed surfaces of the stone block (weathered) while the others were obtained from the centre of the block on unexposed surfaces (unweathered). The purpose of this was to compare dissolution of previously weathered versus unweathered surfaces in strong (pH 4·73) versus weak (pH 6·43) solutions of H2CO3. A temperature of c. 19 °C was maintained within the chamber representing a plausible future temperature in Oxford for the year 2200 given current warming scenarios. The simulation lasted 25 days with a few stone samples being removed midway. Stone samples show reduced weight in all cases but one. There was greater dissolution of stone samples in a strong H2CO3 solution as conveyed by higher concentrations of total hardness and Ca2+ in the water samples as well as enhanced microscopic dissolution features identified using SEM. The simulation confirms that enhanced atmospheric CO2 under global warming, given adequate moisture, will accelerate dissolution rates particularly of newly replaced limestone building stones. However, previously weathered surfaces, such as those on historical stone exposed for a century or more, appear to be less susceptible to the effects of such increased rainfall acidity. Conservation techniques which remove weathered surfaces, such as stone cleaning, may accelerate future decay of historical limestone structures by increasing their susceptibility to dissolution. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Investigation of coupling between surface processes and induced flow in the lower continental crust as a cause of intraplate seismicity

    EARTH SURFACE PROCESSES AND LANDFORMS, Issue 12 2006
    Rob Westaway
    Abstract Many studies have highlighted the role of coupling between surface processes and flow in the lower continental crust in deforming the crust and creating topographic relief over Quaternary timescales. On the basis of the rheological knowledge gained, it is suggested that intraplate seismicity can also be caused by coupling between surface processes and flow in the lower continental crust. This view is shown to be a natural consequence of the modern idea that isostatic equilibrium is maintained by flow in the weak lower crust in response to erosion and sedimentation. It is supported by a general correlation between the vigour of surface processes and rates of intraplate seismicity, and by instances of seasonal seismicity that correlates with seasonal climate. Human interference in the environment can affect surface loading: for instance, deforestation for agriculture or urban development can cause increased erosion rates; global warming is expected to cause increased storminess (and thus increased erosion rates) and/or global sea-level rise. The possibility of increased rates of seismicity resulting from these processes should thus be considered in future hazard assessment. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Contemporary richness of holarctic trees and the historical pattern of glacial retreat

    ECOGRAPHY, Issue 2 2007
    Daniel Montoya
    The length of time land has been available for colonization by plants and other organisms could provide a partial explanation of the contemporary richness gradients of trees. According to this hypothesis, increasing times of land availability entail higher chances of recolonization, which eventually have positive effects on tree richness. To test this, we generated a dataset of the Holarctic trees and evaluated the influence of cell age, a measure of the time since an area became free of ice, on the observed tree richness gradients. We found that cell age is associated with richness in both Europe and North America, after controlling for contemporary climate patterns, suggesting that the historical pattern of glacial retreat in response to post-Pleistocene global warming has left a signal still detectable after at least 14,000 yr. The results were consistent using a range of modelling approaches or whether Europe and North America were analyzed separately or in concert. We conclude that, although secondary to contemporary climate, the post-glacial recolonization hypothesis is broadly supported at temperate latitudes. [source]


    Impact of warming and timing of snow melt on soil microarthropod assemblages associated with Dryas- dominated plant communities on Svalbard

    ECOGRAPHY, Issue 1 2006
    Rebecca Dollery
    Open Top Chambers (OTCs) were used to measure impacts of predicted global warming on the structure of the invertebrate community of a Dryas octopetala heath in West Spitsbergen. Results from the OTC experiment were compared with natural variation in invertebrate community structure along a snowmelt transect through similar vegetation up the adjacent hillside. Changes along this transect represent the natural response of the invertebrate community to progressively longer and potentially warmer and drier growing seasons. Using MANOVA, ANOVA, Linear Discriminant Analysis and ,2 tests, significant differences in community composition were found between OTCs and controls and among stations along the transect. Numbers of cryptostigmatic and predatory mites tended to be higher in the warmer OTC treatment but numbers of the aphid Acyrthosiphon svalbardicum, hymenopterous parasitoids, Symphyta larvae, and weevils were higher in control plots. Most Collembola, including Hypogastrura tullbergi, Lepidocyrtus lignorum and Isotoma anglicana, followed a similar trend to the aphid, but Folsomia bisetosa was more abundant in the OTC treatment. Trends along the transect showed clear parallels with the OTC experiment. However, mite species, particularly Diapterobates notatus, tended to increase in numbers under warming, with several species collectively increasing at the earlier exposed transect stations. Overall, the results suggest that the composition and structure of Arctic invertebrate communities associated with Dryas will change significantly under global warming. [source]


    Benthic macroinvertebrates in Swedish streams: community structure, taxon richness, and environmental relations

    ECOGRAPHY, Issue 3 2003
    Leonard Sandin
    Spatial scale, e.g. from the stream channel, riparian zone, and catchment to the regional and global scale is currently an important topic in running water management and bioassessment. An increased knowledge of how the biota is affected by human alterations and management measures taken at different spatial scales is critical for improving the ecological quality of running waters. However, more knowledge is needed to better understand the relationship between environmental factors at different spatial scales, assemblage structure and taxon richness of running water organisms. In this study, benthic macroinvertebrate data from 628 randomly selected streams were analysed for geographical and environmental relationships. The dataset also included 100 environmental variables, from local measures such as in-stream substratum and vegetation type, catchment vegetation and land-use, and regional variables such as latitude and longitude. Cluster analysis of the macroinvertebrate data showed a continuous gradient in taxonomic composition among the cluster groups from north to south. Both locally measured variables (e.g. water chemistry, substratum composition) and regional factors (e.g. latitude, longitude, and an ecoregional delineation) were important for explaining the variation in assemblage structure and taxon richness for stream benthic macroinvertebrates. This result is of importance when planning conservation and management measurements, implementing large-scale biomonitoring programs, and predicting how human alterations (e.g. global warming) will affect running water ecosystems. [source]


    Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations

    ECOLOGY LETTERS, Issue 3 2009
    Jean Clobert
    Abstract There is accumulating evidence that individuals leave their natal area and select a breeding habitat non-randomly by relying upon information about their natal and future breeding environments. This variation in dispersal is not only based on external information (condition dependence) but also depends upon the internal state of individuals (phenotype dependence). As a consequence, not all dispersers are of the same quality or search for the same habitats. In addition, the individual's state is characterized by morphological, physiological or behavioural attributes that might themselves serve as a cue altering the habitat choice of conspecifics. These combined effects of internal and external information have the potential to generate complex movement patterns and could influence population dynamics and colonization processes. Here, we highlight three particular processes that link condition-dependent dispersal, phenotype-dependent dispersal and habitat choice strategies: (1) the relationship between the cause of departure and the dispersers' phenotype; (2) the relationship between the cause of departure and the settlement behaviour and (3) the concept of informed dispersal, where individuals gather and transfer information before and during their movements through the landscape. We review the empirical evidence for these processes with a special emphasis on vertebrate and arthropod model systems, and present case studies that have quantified the impacts of these processes on spatially structured population dynamics. We also discuss recent literature providing strong evidence that individual variation in dispersal has an important impact on both reinforcement and colonization success and therefore must be taken into account when predicting ecological responses to global warming and habitat fragmentation. [source]


    Climate change, genotypic diversity and gene flow in reef-building corals

    ECOLOGY LETTERS, Issue 4 2004
    David J. Ayre
    Abstract In the ocean, large-scale dispersal and replenishment by larvae is a key process underlying biological changes associated with global warming. On tropical reefs, coral bleaching, degradation of habitat and declining adult stocks are also likely to change contemporary patterns of dispersal and gene flow and may lead to range contractions or expansions. On the Great Barrier Reef, where adjacent reefs form a highly interconnected system, we use allozyme surveys of c. 3000 coral colonies to show that populations are genetically diverse, and rates of gene flow for a suite of five species range from modest to high among reefs up to 1200 km apart. In contrast, 700 km further south on Lord Howe Island, genetic diversity is markedly lower and populations are genetically isolated. The virtual absence of long-distance dispersal of corals to geographically isolated, oceanic reefs renders them extremely vulnerable to global warming, even where local threats are minimal. [source]


    Spatial and temporal variations of two cyprinids in a subtropical mountain reserve , a result of habitat disturbance

    ECOLOGY OF FRESHWATER FISH, Issue 3 2007
    C.-C. Han
    Abstract,,, We investigated the variations of population of two cyprinids, Varicorhinus alticorpus and Varicorhinus barbatulus, using long-term survey data (1995,2004) in the subtropical island of Taiwan. Fish abundance data showed that at the mainstem stations, V. barbatulus which used to dominate in the higher altitude had declined significantly, while V. alticorpus that used to occupy only the lower altitude had spread upward. However, at the tributaries, trend of the populations of V. barbatulus were not significantly different over time, while populations of V. alticorpus were absent at higher altitude but began to increase at lower altitude. Environmental parameters revealed that sporadic high turbidity was observed at the mainstem stations, but not at the tributaries. Images taken before and after typhoon also showed habitat destruction by debris flow at the mainstem stations. As some models predicted that suitable fish habitats will shrink because of increasing water temperature due to global warming, we showed that fish distribution may be affected by habitat disturbance due to intensified storms sooner than the actual increase of water temperature. [source]


    Cycle analysis of low and high H2 utilization SOFCs/gas turbine combined cycle for CO2 recovery

    ELECTRONICS & COMMUNICATIONS IN JAPAN, Issue 10 2008
    Takuya Taniuchi
    Abstract Global warming is mainly caused by CO2 emission from thermal power plants, which burn fossil fuel with air. One of the countermeasure technologies to prevent global warming is CO2 recovery from combustion flue gas and the sequestration of CO2 underground or in the ocean. SOFC and other fuel cells can produce high-concentration CO2, because the reformed fuel gas reacts with oxygen electrochemically without being mixed with air, or diluted by N2. Thus, we propose to operate the multistage SOFCs under high utilization of reformed fuel for obtaining high-concentration CO2. In this report, we have estimated the multistage SOFCs' performance considering H2 diffusion and the combined cycle efficiency of multistage SOFC/gas turbine/CO2 recovery power plant. The power generation efficiency of our CO2 recovery combined cycle is 68.5% and the efficiency of conventional SOFC/GT cycle is 57.8% including the CO2 recovery amine process. © 2009 Wiley Periodicals, Inc. Electron Comm Jpn, 91(10): 38,45, 2008; Published online in Wiley InterScience (www.interscience. wiley.com). DOI 10.1002/ecj.10165 [source]


    Waste management modeling with PC-based model , EASEWASTE

    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 1 2008
    Gurbakhash S. Bhander
    Abstract As life-cycle-thinking becomes more integrated into waste management, quantitative tools are needed for assessing waste management systems and technologies. This article presents a decision support model to deal with integrated solid waste management planning problems at a regional or national level. The model is called EASEWASTE (environmental assessment of solid waste systems and technologies). The model consists of a number of modules (submodels), each describing a process in a real waste management system, and these modules may combine to represent a complete waste management system in a scenario. EASEWASTE generates data on emissions (inventory), which are translated and aggregated into different environmental impact categories, e.g. the global warming, acidification, and toxicity. To facilitate a "first level" screening evaluation, default values for process parameters have been provided, wherever possible. The EASEWASTE model for life-cycle-assessment of waste management is described and applied to a case study for illustrative purposes. The case study involving hypothetical but realistic data demonstrates the functionality, usability, and flexibilities of the model. The design and implementation of the software successfully address the substantial challenges in integrating process modeling, life-cycle inventory (LCI), and impact assessment (LCIA) modeling, and optimization into an interactive decision support platform. © 2008 American Institute of Chemical Engineers Environ Prog, 2008 [source]