Global Ocean (global + ocean)

Distribution by Scientific Domains


Selected Abstracts


Stability in temperate reef communities over a decadal time scale despite concurrent ocean warming

GLOBAL CHANGE BIOLOGY, Issue 1 2010
RICK D. STUART-SMITH
Abstract Despite increasing scientific and public concerns on the potential impacts of global ocean warming on marine biodiversity, very few empirical data on community-level responses to rising water temperatures are available other than for coral reefs. This study describes changes in temperate subtidal reef communities over decadal and regional scales in a location that has undergone considerable warming in recent decades and is forecast to be a ,hotspot' for future warming. Plant and animal communities at 136 rocky reef sites around Tasmania (south-east Australia) were censused between 1992 and 1995, and again in 2006 and 2007. Despite evidence of major ecological changes before the period of study, reef communities appeared to remain relatively stable over the past decade. Multivariate analyses and univariate metrics of biotic communities revealed few changes with time, although some species-level responses could be interpreted as symptomatic of ocean warming. These included fishes detected in Tasmania only in recent surveys and several species with warmer water affinities that appeared to extend their distributions further south. The most statistically significant changes observed in species abundances, however, were not related to their biogeographical affinities. The majority of species with changing abundance possessed lower to mid-range abundances rather than being common, raising questions for biodiversity monitoring and management. We suggest that our study encompassed a relatively stable period following more abrupt change, and that community responses to ocean warming may follow nonlinear, step-like trajectories. [source]


Trend patterns in global sea surface temperature

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 14 2009
Susana M. Barbosa
Abstract Isolating long-term trend in sea surface temperature (SST) from El Niño southern oscillation (ENSO) variability is fundamental for climate studies. In the present study, trend-empirical orthogonal function (EOF) analysis, a robust space-time method for extracting trend patterns, is applied to isolate low-frequency variability from time series of SST anomalies for the 1982,2006 period. The first derived trend pattern reflects a systematic decrease in SST during the 25-year period in the equatorial Pacific and an increase in most of the global ocean. The second trend pattern reflects mainly ENSO variability in the Pacific Ocean. The examination of the contribution of these low-frequency modes to the globally averaged SST fluctuations indicates that they are able to account for most (>90%) of the variability observed in global mean SST. Trend-EOFs perform better than conventional EOFs when the interest is on low-frequency rather than on maximum variance patterns, particularly for short time series such as the ones resulting from satellite retrievals. Copyright © 2009 Royal Meteorological Society [source]


ENSO variability, teleconnections and climate change,

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 15 2001
Henry F. Diaz
Abstract An overview is presented of the principal features of the El Niño,Southern Oscillation (ENSO) teleconnections in terms of regional patterns of surface temperature, precipitation and mid-tropospheric atmospheric circulation. The discussion is cast in the context of variations in the associations over time, with decadal scale changes emphasized. In the five decades or so for which we have adequate records to reliably analyse the global aspects of ENSO effects on regional climates around the world, we have witnessed one major decadal scale change in the overall pattern of sea-surface temperatures (SST) in the global ocean, and concomitant changes in the atmospheric response to those changes. The analysis underscores the connection between low frequency changes in tropical SST, ENSO and decadal scale changes in the general atmospheric circulation, pointing to the complex interplay between the canonical ENSO system, slow changes in SST in the Indo-Pacific over the last century, and long-term changes in the atmospheric circulation itself. Published in 2001 by John Wiley & Sons, Ltd. [source]


Modeling the environmental fate of perfluorooctanoate and its precursors from global fluorotelomer acrylate polymer use

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2008
Rosalie van Zelm
Abstract The environment contains various direct and indirect sources of perfluorooctanoic acid (PFOA). The present study uses a dynamic multispecies environmental fate model to analyze the potential formation of perfluorooctanoate (PFO), the anion of PFOA, in the environment from fluorotelomer acrylate polymer (FTacrylate) emitted to landfills and wastewater, residual fluorotelomer alcohol (8:2 FTOH) in FTacrylate, and residual PFOA in FTacrylate. A multispecies version of the SimpleBox model, which is capable of determining the fate of a chemical and its degradation products, was developed for this purpose. An uncertainty analysis on the chemical-specific input parameters was performed to examine for uncertainty in modeled concentrations. In 2005, residual 8:2 FTOH made up 80% of the total contribution of FTacrylate use to PFO concentrations in global oceans, and residual PFOA in FTacrylate contributed 15% to PFO concentrations from FTacrylate use in global oceans. After hundreds of years, however, the main source of PFO from total historical FTacrylate production is predicted to be FTacrylate degrading in soil following land application of sludge from sewage treatment plants, followed by FTacrylate still present in landfills. Uncertainty in modeled PFO concentrations was up to a factor of 3.3. Current FTacrylate use contributes less than 1% of the PFO in seawater, but because direct PFOA emission sources are reduced and PFOA continues to be formed from FTacrylate in soil and in landfills, this fraction grows over time. [source]


Retro-active skill of multi-tiered forecasts of summer rainfall over southern Africa

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 1 2001
Willem A. Landman
Abstract Sea-surface temperature (SST) variations of the oceans surrounding southern Africa are associated with seasonal rainfall variability, especially during austral summer when the tropical atmospheric circulation is dominant over the region. Because of instabilities in the linear association between summer rainfall over southern Africa and SSTs of the tropical Indian Ocean, the skilful prediction of seasonal rainfall may best be achieved using physically based models. A two-tiered retro-active forecast procedure for the December,February (DJF) season is employed over a 10-year period starting from 1987/1988. Rainfall forecasts are produced for a number of homogeneous regions over part of southern Africa. Categorized (below-normal, near-normal and above-normal) statistical DJF rainfall predictions are made for the region to form the baseline skill level that has to be outscored by more elaborate methods involving general circulation models (GCMs). The GCM used here is the Centre for Ocean,Land,Atmosphere Studies (COLA) T30, with predicted global SST fields as boundary forcing and initial conditions derived from the National Centres for Environmental Prediction (NCEP) reanalysis data. Bias-corrected GCM simulations of circulation and moisture at certain standard pressure levels are downscaled to produce rainfall forecasts at the regional level using the perfect prognosis approach. In the two-tiered forecasting system, SST predictions for the global oceans are made first. SST anomalies of the equatorial Pacific (NIÑO3.4) and Indian oceans are predicted skilfully at 1- and 3-month lead-times using a statistical model. These retro-active SST forecasts are accurate for pre-1990 conditions, but predictability seems to have weakened during the 1990s. Skilful multi-tiered rainfall forecasts are obtained when the amplitudes of large events in the global oceans (such as El Niño and La Niña episodes) are described adequately by the predicted SST fields. GCM simulations using persisted August SST anomalies instead of forecast SSTs produce skill levels similar to those of the baseline for longer lead-times. Given high-skill SST forecasts, the scheme has the potential to provide climate forecasts that outscore the baseline skill level substantially. Copyright © 2001 Royal Meteorological Society [source]