Home About us Contact | |||
Global Environmental Change (global + environmental_change)
Selected AbstractsTeaching and Learning Guide for: The Geopolitics of Climate ChangeGEOGRAPHY COMPASS (ELECTRONIC), Issue 5 2008Jon Barnett Author's Introduction Climate change is a security problem in as much as the kinds of environmental changes that may result pose risks to peace and development. However, responsibilities for the causes of climate change, vulnerability to its effects, and capacity to solve the problem, are not equally distributed between countries, classes and cultures. There is no uniformity in the geopolitics of climate change, and this impedes solutions. Author Recommends 1.,Adger, W. N., et al. (eds) (2006). Fairness in adaptation to climate change. Cambridge, MA: MIT Press. A comprehensive collection of articles on the justice dimensions of adaptation to climate change. Chapters discuss potential points at which climate change becomes ,dangerous', the issue of adaptation under the United Nations Framework Convention on Climate Change (UNFCCC), the unequal outcomes of adaptation within a society, the effects of violent conflict on adaptation, the costs of adaptation, and examples from Bangladesh, Tanzania, Botswana, and Hungary. 2.,Leichenko, R., and O'Brien, K. (2008). Environmental change and globalization: double exposures. New York: Oxford University Press. This book uses examples from around the world to show the way global economic and political processes interact with environmental changes to create unequal outcomes within and across societies. A very clear demonstration of the way vulnerability to environmental change is as much driven by social processes as environmental ones, and how solutions lie within the realm of decisions about ,development' and ,environment'. 3.,Nordås, R., and Gleditsch, N. (2007). Climate conflict: common sense or nonsense? Political Geography 26 (6), pp. 627,638. doi:10.1016/j.polgeo.2007.06.003 An up-to-date, systematic and balanced review of research on the links between climate change and violent conflict. See also the other papers in this special issue of Political Geography. 4.,Parry, M., et al. (eds) (2007). Climate change 2007: impacts adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press. The definitive review of all the peer-reviewed research on the way climate change may impact on places and sectors across the world. Includes chapters on ecosystems, health, human settlements, primary industries, water resources, and the major regions of the world. All chapters are available online at http://www.ipcc.ch/ipccreports/ar4-wg2.htm 5.,Salehyan, I. (2008). From climate change to conflict? No consensus yet. Journal of Peace Research 45 (3), pp. 315,326. doi:10.1177/0022343308088812 A balanced review of research on the links between climate change and conflict, with attention to existing evidence. 6.,Schwartz, P., and Randall, D. (2003). An abrupt climate change scenario and its implications for United States national security. San Francisco, CA: Global Business Network. Gives insight into how the US security policy community is framing the problem of climate change. This needs to be read critically. Available at http://www.gbn.com/ArticleDisplayServlet.srv?aid=26231 7.,German Advisory Council on Global Change. (2007). World in transition: climate change as a security risk. Berlin, Germany: WBGU. A major report from the German Advisory Council on Global Change on the risks climate changes poses to peace and stability. Needs to be read with caution. Summary and background studies are available online at http://www.wbgu.de/wbgu_jg2007_engl.html 8.,Yamin, F., and Depedge, J. (2004). The International climate change regime: a guide to rules, institutions and procedures. Cambridge, UK: Cambridge University Press. A clear and very detailed explanation of the UNFCCC's objectives, actors, history, and challenges. A must read for anyone seeking to understand the UNFCCC process, written by two scholars with practical experience in negotiations. Online Materials 1.,Environmental Change and Security Program at the Woodrow Wilson International Center for Scholars http://www.wilsoncenter.org/ecsp The major website for information about environmental security. From here, you can download many reports and studies, including the Environmental Change and Security Project Report. 2.,Global Environmental Change and Human Security Project http://www.gechs.org This website is a clearing house for work and events on environmental change and human security. 3.,Intergovernmental Panel on Climate Change (IPCC) http://www.ipcc.ch/ From this website, you can download all the chapters of all the IPCC's reports, including its comprehensive and highly influential assessment reports, the most recent of which was published in 2007. The IPCC were awarded of the Nobel Peace Prize ,for their efforts to build up and disseminate greater knowledge about man-made (sic) climate change, and to lay the foundations for the measures that are needed to counteract such change'. 4.,Tyndall Centre for Climate Change Research http://www.tyndall.ac.uk The website of a major centre for research on climate change, and probably the world's leading centre for social science based analysis of climate change. From this site, you can download many publications about mitigation of and adaptation to climate change, and about various issues in the UNFCCC. 5.,United Nations Framework Convention on Climate Change http://unfccc.int/ The website contains every major document relation to the UNFCCC and its Kyoto Protocol, including the text of the agreements, national communications, country submissions, negotiated outcomes, and background documents about most key issues. Sample Syllabus: The Geopolitics of Climate Change topics for lecture and discussion Week I: Introduction Barnett, J. (2007). The geopolitics of climate change. Geography Compass 1 (6), pp. 1361,1375. United Nations Secretary General, Kofi Annan, address to the 12th Conference of Parties to the United Nations Framework Convention on Climate Change, Nairobi, 15 November 2006. Available online at http://www.unep.org/Documents.Multilingual/Default.asp?DocumentID=495&ArticleID=5424&l=en Week II: The History and Geography of Greenhouse Gas Emissions Topic: The drivers of climate change in space and time Reading Baer, P. (2006). Adaptation: who pays whom? In: Adger, N., et al. (eds) Fairness in adaptation to climate change. Cambridge, MA: MIT Press, pp. 131,154. Boyden, S., and Dovers, S. (1992). Natural-resource consumption and its environmental impacts in the Western World: impacts of increasing per capita consumption. Ambio 21 (1), pp. 63,69. Week III: The Environmental Consequences of climate change Topic: The risks climate change poses to environmental systems Reading Intergovernmental Panel on Climate Change. (2007). Climate change 2007: climate change impacts, adaptation and vulnerability: summary for policymakers. Geneva, Switzerland: IPCC Secretariat. Watch: Al Gore. The Inconvenient Truth. Weeks IV and V: The Social Consequences of Climate Change Topic: The risks climate change poses to social systems Reading Adger, W. N. (1999). Social vulnerability to climate change and extremes in coastal Vietnam. World Development 27, pp. 249,269. Comrie, A. (2007). Climate change and human health. Geography Compass 1 (3), pp. 325,339. Leary, N., et al. (2006). For whom the bell tolls: vulnerability in a changing climate. A Synthesis from the AIACC project, AIACC Working Paper No. 21, International START Secretariat, Florida. Stern, N. (2007). Economics of climate change: the Stern review. Cambridge, UK: Cambridge University Press (Chapters 3,5). Week VI: Mitigation of Climate Change: The UNFCCC Topic: The UNFCCC and the Kyoto Protocol Reading Najam, A., Huq, S., and Sokona, Y. (2003). Climate negotiations beyond Kyoto: developing countries concerns and interests. Climate Policy 3 (3), pp. 221,231. UNFCCC Secretariat. (2005). Caring for climate: a guide to the climate change convention and the Kyoto Protocol. Bonn, Germany: UN Framework Convention on Climate Change Secretariat. Weeks VII and VIII: Adaptation to Climate Change Topic: What can be done to allow societies to adapt to avoid climate impacts? Reading Adger, N., et al. (2007). Assessment of adaptation practices, options, constraints and capacity. In: Parry, M., et al. (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press, pp. 717,744. Burton, I., et al. (2002). From impacts assessment to adaptation priorities: the shaping of adaptation policy. Climate Policy 2 (2,3), pp. 145,159. Eakin, H., and Lemos, M. C. (2006). Adaptation and the state: Latin America and the challenge of capacity-building under globalization. Global Environmental Change: Human and Policy Dimensions 16 (1), pp. 7,18. Ziervogel, G., Bharwani, S., and Downing, T. (2006). Adapting to climate variability: pumpkins, people and policy. Natural Resources Forum 30, pp. 294,305. Weeks IX and X: Climate Change and Migration Topic: Will climate change force migration? Readings Gaim, K. (1997). Environmental causes and impact of refugee movements: a critique of the current debate. Disasters 21 (1), pp. 20,38. McLeman, R., and Smit, B. (2006). Migration as adaptation to climate change. Climatic Change 76 (1), pp. 31,53. Myers, N. (2002). Environmental refugees: a growing phenomenon of the 21st century. Philosophical Transactions of the Royal Society 357 (1420), pp. 609,613. Perch-Nielsen, S., Bättig, M., and Imboden, D. (2008). Exploring the link between climate change and migration. Climatic Change (online first, forthcoming); doi:10.1007/s10584-008-9416-y Weeks XI and XII: Climate Change and Violent Conflict Topic: Will Climate change cause violent conflict? Readings Barnett, J., and Adger, N. (2007). Climate change, human security and violent conflict. Political Geography 26 (6), pp. 639,655. Centre for Strategic and International Studies. (2007). The age of consequences: the foreign policy and national security implications of global climate change. Washington, DC: CSIS. Nordås, R., and Gleditsch, N. (2007). Climate conflict: common sense or nonsense? Political Geography 26 (6), pp. 627,638. Schwartz, P., and Randall, D. (2003). An abrupt climate change scenario and its implications for United States national security. San Francisco, CA: Global Business Network. [online]. Retrieved on 8 April 2007 from http://www.gbn.com/ArticleDisplayServlet.srv?aid=26231 Focus Questions 1Who is most responsible for climate change? 2Who is most vulnerable to climate change? 3Does everyone have equal power in the UNFCCC process? 4Will climate change force people to migrate? Who? 5What is the relationship between adaptation to climate change and violent conflict? [source] Plants and Global Environmental Change: A Special Issue Highlighting Younger ScientistsJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 11 2008Scott A. Heckathorn Doctor [source] Molecular ecology of global changeMOLECULAR ECOLOGY, Issue 19 2007THORSTEN B. H. REUSCH Abstract Global environmental change is altering the selection regime for all biota. The key selective factors are altered mean, variance and seasonality of climatic variables and increase in CO2 concentration itself. We review recent studies that document rapid evolution to global climate change at the phenotypic and genetic level, as a response to shifts in these factors. Among the traits that have changed are photoperiod responses, stress tolerance and traits associated with enhanced dispersal. The genetic basis of two traits with a critical role under climate change, stress tolerance and photoperiod behaviour, is beginning to be understood for model organisms, providing a starting point for candidate gene approaches in targeted nonmodel species. Most studies that have documented evolutionary change are correlative, while selection experiments that manipulate relevant variables are rare. The latter are particularly valuable for prediction because they provide insight into heritable change to simulated future conditions. An important gap is that experimental selection regimes have mostly been testing one variable at a time, while synergistic interactions are likely under global change. The expanding toolbox available to molecular ecologists holds great promise for identifying the genetic basis of many more traits relevant to fitness under global change. Such knowledge, in turn, will significantly advance predictions on global change effects because presence and polymorphism of critical genes can be directly assessed. Moreover, knowledge of the genetic architecture of trait correlations will provide the necessary framework for understanding limits to phenotypic evolution; in particular as lack of critical gene polymorphism or entire pathways, metabolic costs of tolerance and linkage or pleiotropy causing negative trait correlations. Synergism among stressor impacts on organismal function may be causally related to conflict among transcriptomic syndromes specific to stressor types. Because adaptation to changing environment is always contingent upon the spatial distribution of genetic variation, high-resolution estimates of gene flow and hybridization should be used to inform predictions of evolutionary rates. [source] Neophyte species richness at the landscape scale under urban sprawl and climate warmingDIVERSITY AND DISTRIBUTIONS, Issue 6 2009Michael P. Nobis Abstract Aim, Land use and climate are two major components of global environmental change but our understanding of their simultaneous and interactive effects upon biodiversity is still limited. Here, we investigated the relationship between the species richness of neophytes, i.e. non-native vascular plants introduced after 1500 AD, and environmental covariates to draw implications for future dynamics under land-use and climate change. Location, Switzerland, Central Europe. Methods, The distribution of vascular plants was derived from a systematic national grid of 1 km2 quadrates (n = 456; Swiss Biodiversity Monitoring programme) including 1761 species, 122 of which were neophytes. Generalized linear models (GLMs) were used to correlate neophyte species richness with environmental covariates. The impact of land-use and climate change was thereafter evaluated by projections for the years 2020 and 2050 using scenarios of moderate and strong changes for climate warming (IPCC) and urban sprawl (NRP 54). Results, Mean annual temperature and the amount of urban areas explained neophyte species richness best, with a high predictive power of the corresponding model (cross-validated D2 = 0.816). Climate warming had a stronger impact on the potential increase in the mean neophyte species richness (up to 191% increase by 2050) than ongoing urban sprawl (up to 10% increase) independently from variable interactions and model extrapolations to non-analogue environments. Main conclusions, In contrast to other vascular plants, the prediction of neophyte species richness at the landscape scale in Switzerland requires few variables only, and regions of highest species richness of the two groups do not coincide. The neophyte species richness is basically driven by climatic (temperature) conditions, and urban areas additionally modulate small-scale differences upon this coarse-scale pattern. According to the projections climate warming will contribute to the future increase in neophyte species richness much more than ongoing urbanization, but the gain in new neophyte species will be highest in urban regions. [source] European governance of natural resources and participation in a multi-level context: An editorialENVIRONMENTAL POLICY AND GOVERNANCE, Issue 3 2009Felix Rauschmayer Abstract Policy markers are looking at two different directions for guidance when addressing the challenges of multi-level environmental governance in the face of global environmental change. First, they are seeking scientific advice to find solutions to policy problems. Second, they are emphasizing participation of the public and/or stakeholders to enhance the legitimacy of governance. In this editorial we explore the challenges of participation in a multi-level governance context, outline a practically relevant strategy for research on multi-level governance of natural resources and briefly outline the key contributions of the five articles that comprise this special issue. The special issue maps issues of key importance for research on multi-level governance of natural resources rather than offering conclusions from systematic comparative studies , the latter is the ultimate goal of the GoverNat project from which the contributions stem. Copyright © 2009 John Wiley & Sons, Ltd and ERP Environment. [source] Triggers for Late Twentieth Century Reform of Australian Coastal ManagementGEOGRAPHICAL RESEARCH, Issue 3 2000B. G. Thom This paper identifies four triggers that underpinned the late 20th century reform of coastal management in Australia. These have operated across federal, state and local levels of government. The triggers are global environmental change, sustainable development, integrated resource management, and community awareness of management issues and participation in decision making. This reform has been driven by international and national forces. A number of inquiries into coastal management in Australia culminated in the production of a national coastal policy in 1995. This has led to fundamental changes in coastal management and to the recognition of the inevitability of changes in coastal systems. Federal policies and programs are being translated into action at the state and local government levels through a variety of funding mechanisms and programs. These involve capacity building, a memorandum of understanding between all levels of government, an enhanced role for state advisory or co-ordinating bodies, and an increased role for public participation. [source] Exploitation and habitat degradation as agents of change within coral reef fish communitiesGLOBAL CHANGE BIOLOGY, Issue 12 2008S. K. WILSON Abstract Over-exploitation and habitat degradation are the two major drivers of global environmental change and are responsible for local extinctions and declining ecosystem services. Here we compare the top-down effect of exploitation by fishing with the bottom-up influence of habitat loss on fish communities in the most diverse of ecological systems, coral reefs. Using a combination of multivariate techniques and path analyses, we illustrate that the relative importance of coral cover and fishing in controlling fish abundance on remote Fijian reefs varies between species and functional groups. A decline in branching Acropora coral is strongly associated with a decline in abundance of coral-feeding species, and a decrease in coral-associated habitat complexity, which has indirectly contributed to reduced abundance of small-bodied damselfish. In contrast, reduced fishing pressure, brought about by declining human populations and a shift to alternate livelihoods, is associated with increased abundance of some piscivores and fisheries target species. However, availability of prey is controlled by coral-associated habitat complexity and appears to be a more important driver of total piscivore abundance compared with fishing pressure. Effects of both fishing and coral loss are stronger on individual species than functional groups, as variation in the relative importance of fishing or coral loss among species within the same functional group attenuated the impact of either of these potential drivers at the functional level. Overall, fishing continues to have an influence on Fijian fish communities; however, habitat loss is currently the overriding agent of change. The importance of coral loss mediated by climate change is expected to have an increasing contribution to fish community dynamics, particularly in remote locations or where the influence of fishing is waning. [source] Macroecology, global change and the shadow of forgotten ancestorsGLOBAL ECOLOGY, Issue 1 2008José Alexandre Felizola Diniz-Filho ABSTRACT Many recent studies have evaluated how global changes will affect biodiversity, and have mainly focused on how to develop conservation strategies to avoid, or at least minimize, extinctions due to shifts in suitable habitats for the species. However, these complex potential responses might be in part structured in phylogeny, because of the macroecological traits underlying them. In this comment, we review recent analytical developments in phylogenetic comparative methods that can be used to understand patterns of trait changes under environmental change. We focus on a partial regression approach that allows for partitioning the variance of traits into a fraction attributed to a pure ecological component, a fraction attributed to phylogenetically structured environmental variation (niche conservatism) and a fraction that may be attributed to phylogenetic effects only. We then develop a novel interpretation for linking these components for multiple traits with potential responses of species to global environmental change (i.e. adaptation, range shifts or extinctions). We hope that this interpretation will stimulate further research linking evolutionary components of multiple traits with broad-scale environmental changes. [source] Grasslands, grazing and biodiversity: editors' introductionJOURNAL OF APPLIED ECOLOGY, Issue 2 2001Watkinson A.R. Summary 1Natural, semi-natural and artificial grasslands occur extensively around the globe, but successful management for production and biodiversity poses several dilemmas for conservationists and farmland managers. Deriving from three continents (Africa, Australia and Europe), papers in this Special Profile interface three specific issues: plant responses to grazing, plant invasions and the responses to management of valued grassland biota. 2Although pivotal in grassland management, plant responses to grazing are sometimes difficult to predict. Two alternative approaches are presented here. The first uses natural variations in sheep grazing around a water hole to model the dynamic population response of a chenopod shrub. The second analyses a long-term grazing experiment to investigate the links between plant traits and grazing response. 3Linked often crucially with grazing, but also driven sometimes by extrinsic factors, invasions are often cause for concern in grassland management. The invasions of grasslands by woody plants threatens grassland habitats while the invasions of pastures by alien weeds reduces pasture productivity. The papers in this section highlight how a complementary range of management activities can reduce the abundance of invaders. A final paper highlights how global environmental change is presenting new circumstances in which grassland invasion can occur. 4The impact of grassland management on biodiversity is explored in this Special Profile with specific reference to invertebrates, increasingly recognized both for the intrinsic conservation value of many groups and for their role in ecosystem processes. The potential for manipulating flooding in wet grasslands to increase the soil invertebrate prey of wading birds is illustrated, together with the roles of management and landscape structure in enhancing insect diversity. 5In the face of climate change and growing demands for agricultural productivity, future pressures on grassland ecosystems will intensify. In this system in which productivity and conservation are so closely bound, there is a need both to raise the profile of the issues involved, and to improve our understanding of the applied ecology required for successful management. [source] The parable of Green Mountain: Ascension Island, ecosystem construction and ecological fittingJOURNAL OF BIOGEOGRAPHY, Issue 1 2004David M. Wilkinson Abstract Aims, To use the ecosystem on Green Mountain, Ascension Island, to illustrate aspects of ecosystem construction and function as well as possible mitigation of human caused global environmental change. Location, Ascension Island, tropical south Atlantic. Main conclusions, The cloud forest on Green Mountain is a man-made system that has produced a tropical forest without any coevolution between its constituent species. This has implications for the way we think about ecosystems and provides a striking example of Janzen's idea of ,ecological fitting'. This system provides ecosystem services, such as carbon sequestration, and illustrates the possible role of man-made ecosystems in the mitigation of global warming. [source] Pulse dynamics and microbial processes in aridland ecosystemsJOURNAL OF ECOLOGY, Issue 3 2008Scott L. Collins Summary 1Aridland ecosystems cover about one-third of terrestrial environments globally, yet the extent to which models of carbon (C) and nitrogen (N) cycling, developed largely from studies of mesic ecosystems, apply to aridland systems remains unclear. 2Within aridland ecosystems, C and N dynamics are often described by a pulse-reserve model in which episodic precipitation events stimulate biological activity that generate reserves of biomass, propagules and organic matter that prime the ecosystem to respond rapidly to subsequent precipitation events. 3,The role of microbial C and N processing within the pulse-reserve paradigm has not received much study. We present evidence suggesting that fungi play a critical and underappreciated role in aridland soils, including efficient decomposition of recalcitrant C compounds, N-transformations such as nitrification, and nutrient storage and translocation of C and N between plants and biotic soil crusts. While fungi may perform some of these functions in other ecosystems, this ,fungal loop' assumes particular importance in the N cycle in aridlands because water availability imposes even greater restrictions on bacterial activity and physicochemical processes limit accumulation of soil organic matter (SOM). 4We incorporate these findings into a Threshold-Delay Nutrient Dynamics (TDND) model for aridland ecosystems in which plant responses to pulsed precipitation events are mediated by a fungal loop that links C and N cycling, net primary production (NPP) and decomposition in aridland soils. 5Synthesis. Arid ecosystems are highly sensitive to global environmental change including N deposition and altered precipitation patterns; yet, models from mesic ecosystems do not adequately apply to aridland environments. Our ,fungal loop' N cycle model integrates spatial structure with pulse dynamics and extends the pulse-reserve paradigm to include the key role of microbial processes in aridland ecosystem dynamics. [source] The potential public health impact of global environmental changeAUSTRALIAN AND NEW ZEALAND JOURNAL OF PUBLIC HEALTH, Issue 1 2000Shilu Tong No abstract is available for this article. [source] Herbivore control of annual grassland composition in current and future environmentsECOLOGY LETTERS, Issue 1 2006Halton A. Peters Abstract Selective consumption by herbivores influences the composition and structure of a range of plant communities. Anthropogenically driven global environmental changes, including increased atmospheric carbon dioxide (CO2), warming, increased precipitation, and increased N deposition, directly alter plant physiological properties, which may in turn modify herbivore consumption patterns. In this study, we tested the hypothesis that responses of annual grassland composition to global changes can be predicted exclusively from environmentally induced changes in the consumption patterns of a group of widespread herbivores, the terrestrial gastropods. This was done by: (1) assessing gastropod impacts on grassland composition under ambient conditions; (2) quantifying environmentally induced changes in gastropod feeding behaviour; (3) predicting how grassland composition would respond to global-change manipulations if influenced only by herbivore consumption preferences; and (4) comparing these predictions to observed responses of grassland community composition to simulated global changes. Gastropod herbivores consume nearly half of aboveground production in this system. Global changes induced species-specific changes in plant leaf characteristics, leading gastropods to alter the relative amounts of different plant types consumed. These changes in gastropod feeding preferences consistently explained global-change-induced responses of functional group abundance in an intact annual grassland exposed to simulated future environments. For four of the five global change scenarios, gastropod impacts explained > 50% of the quantitative changes, indicating that herbivore preferences can be a major driver of plant community responses to global changes. [source] Sindbis viruses and other alphaviruses as cause of human arthritic diseaseJOURNAL OF INTERNAL MEDICINE, Issue 6 2004M. Laine Abstract. Amongst the arthritis-causing arboviruses, i.e. those spread by insects, the alphavirus group is of special interest. These viruses occasionally cause vast outbreaks, such as O'nyong-nyong in Africa in 1959. In Fennoscandia, Sindbis-related Ockelbo, Pogosta, or Karelian fever viruses have been found to cause significant morbidity. The major symptoms in addition to joint inflammation are fever, fatigue, headache and rash. The joint symptoms may persist for weeks, even months. The diagnosis is based on the clinical picture and serology. The causative viruses are closely related but not identical. It appears that at least in Finland the Pogosta disease is more common than thought, and the symptoms may often be overlooked. Several factors related to the viruses, their hosts, and global environmental changes may affect the spread of these viruses. All over the world arbovirus-caused diseases have increased, because of global changes. [source] |