Home About us Contact | |||
Glutathione Peroxidase (glutathione + peroxidase)
Terms modified by Glutathione Peroxidase Selected AbstractsGlutathione Peroxidase-Based Amperometric Biosensor for the Detection of S -NitrosothiolsELECTROANALYSIS, Issue 21 2006Mustafa Musameh Abstract A new biosensor is described for the detection of S -nitrosothiols (RSNOs) based on their decomposition by immobilized glutathione peroxidase (GPx), an enzyme containing selenocysteine residue that catalytically produces nitric oxide (NO) from RSNOs. The enzyme is entrapped at the distal tip of a planar amperometric NO sensor. The new biosensor shows good sensitivity, linearity, reversibility, and response times towards various RSNO species in PBS buffer, pH,7.4 . In most cases, the response time is less than 5,min, and the response is linear up to 6 ,M of the tested RSNO species. The lowest detection limit is obtained for S -nitrosocysteine (CysNO), at approx. 0.2,,M. The biosensor's sensitivity is not affected by the addition of EDTA as a chelating agent; an advantage over other potential catalytic enzymes that contain copper ion centers, such as CuZn-superoxide dismutase and xanthine oxidase. However, lifetime of the new sensor is limited, with sensitivity decrease of 50% after two days of use. Nonetheless, the new amperometric GPx based RSNO sensor could prove useful for detecting relative RSNO levels in biological samples, including whole blood. [source] Spatial and Temporal Ontogenies of Glutathione Peroxidase and Glutathione Disulfide Reductase During Development of the Prenatal RatJOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 4 2001Hyungsuk Choe Abstract Spatial and temporal expression and regulation of the antioxidant enzymes, glutathione peroxidase (GSH-Px), glutathione disulfide reductase (GSSG-Rd) may be important in determining cell-specific susceptibility to embryotoxicants. Creation of tissue-specific ontogenies for antioxidant enzyme activities during development is an important first step in understanding regulatory relationships. Early organogenesis-stage embryos were grouped according to the somite number (GD 9,13), and fetuses were evaluated by gestational day (GD 14,21). GSH-Px activities in the visceral yolk sac (VYS) increased on consecutive days from GD 9 to GD 13, representing a 5.7-fold increase during this period of development. GSH-Px activities in VYS decreased after GD 13, ultimately constituting a 37% decrease at GD 21. Head, heart, and trunk specific activities generally increased from GD 9 to GD 13 albeit not to the same magnitude as detected in the VYS. GSSG-Rd activities showed substantial increases in the VYS from GD 9 to GD 13, 6.3-fold and decreased thereafter to 50% by GD 21. The greatest changes in enzyme activities were noted in the period between GD 10 and GD 11, where the embryo establishes an active cardiovascular system and begins to convert to aerobic metabolism. Generally, from GD 14,21, embryonic organ GSH-Px and GSSG-Rd activities either remained constant or increased as gestation progressed. These studies suggest the importance of the VYS in dealing with ROS and protecting the embryo. Furthermore, understanding the consequences of lower antioxidant activities during organogenesis may help to pinpoint periods of teratogenic susceptibility to xenobiotics and increased oxygen. © 2001 John Wiley & Sons, Inc. J Biochem Mol Toxicol 15:197,206, 2001 [source] Preferential Resistance of Dopaminergic Neurons to the Toxicity of Glutathione Depletion Is Independent of Cellular Glutathione Peroxidase and Is Mediated by TetrahydrobiopterinJOURNAL OF NEUROCHEMISTRY, Issue 6 2000Ken Nakamura Abstract: Depletion of glutathione in the substantia nigra is one of the earliest changes observed in Parkinson's disease (PD) and could initiate dopaminergic neuronal degeneration. Nevertheless, experimental glutathione depletion does not result in preferential toxicity to dopaminergic neurons either in vivo or in vitro. Moreover, dopaminergic neurons in culture are preferentially resistant to the toxicity of glutathione depletion, possibly owing to differences in cellular glutathione peroxidase (GPx1) function. However, mesencephalic cultures from GPx1-knockout and wild-type mice were equally susceptible to the toxicity of glutathione depletion, indicating that glutathione also has GPx1-independent functions in neuronal survival. In addition, dopaminergic neurons were more resistant to the toxicity of both glutathione depletion and treatment with peroxides than nondopaminergic neurons regardless of their GPx1 status. To explain this enhanced antioxidant capacity, we hypothesized that tetrahydrobiopterin (BH4) may function as an antioxidant in dopaminergic neurons. In agreement, inhibition of BH4 synthesis increased the susceptibility of dopaminergic neurons to the toxicity of glutathione depletion, whereas increasing BH4 levels completely protected nondopaminergic neurons against it. Our results suggest that BH4 functions as a complementary antioxidant to the glutathione/glutathione peroxidase system and that changes in BH4 levels may contribute to the pathogenesis of PD. [source] Level of Superoxide Dismutase, Glutathione Peroxidase and Uric Acid in Thioacetamide-Induced Cirrhotic RatsANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 2 2002H. ABUL Levels of superoxide dismutase and glutathione peroxidase were determined in blood and hepatic tissues of thioacetamide-induced cirrhotic rats and compared to levels in age-matched control animals. The plasma level of uric acid was also determined in these animals. A general decrease was noticed in the level of all the antioxidants examined as compared to the control. This decrease was statistically significant in the level of all the antioxidants studied, except for the level of superoxide dismutase in blood. A decrease in the antioxidant level may indicate an increase in free radical level and thereby an increase in cellular damage in cirrhotic rats. The changes in the level of antioxidants showed a direct correlation with the changes in the level of trace elements observed in our previous studies. These studies suggest that antioxidants alone or in combination with trace elements may have beneficial effects in treating liver cirrhosis. [source] A new human catalytic antibody Se-scFv-2D8 and its selenium-containing single domains with high GPX activityJOURNAL OF MOLECULAR RECOGNITION, Issue 4 2010Junjie Xu Abstract Glutathione peroxidase (GPX) is a well-known antioxidant selenoenzyme, which can catalyze the reduction of a variety of hydroperoxides and consequently protect cells and other biological tissues against oxidative damage. Many attempts have been made to mimic its function, and a human catalytic antibody Se-scFv-B3 with GPX activity has been prepared in our previous study. This time, a new clone 2D8 that bound specifically to the glutathione analog GSH-S-DNPBu was selected again by using the technology of phage display antibody library, and then scFv-2D8 was successfully expressed in soluble form and purified using Ni2+ -immobilized metal affinity chromatography. After being converted into selenium-containing scFv by chemically modification, it showed higher GPX activity than previous abzyme Se-scFv-B3. The heavy chain variable fragment of scFv-2D8 was also prepared and converted into selenium-containing protein using the same method. This selenium-containing single-domain antibody showed some GPX activity and, to the best of our knowledge, is the first human single-domain abzyme with GPX activity, which lays a foundation for preparing GPX abzyme with human origin, lower molecular weight and higher activity. Copyright © 2009 John Wiley & Sons, Ltd. [source] Selenium and selenoproteins in the brain and brain diseasesJOURNAL OF NEUROCHEMISTRY, Issue 1 2003Jun Chen Abstract Over the past three decades, selenium has been intensively investigated as an antioxidant trace element. It is widely distributed throughout the body, but is particularly well maintained in the brain, even upon prolonged dietary selenium deficiency. Changes in selenium concentration in blood and brain have been reported in Alzheimer's disease and brain tumors. The functions of selenium are believed to be carried out by selenoproteins, in which selenium is specifically incorporated as the amino acid, selenocysteine. Several selenoproteins are expressed in brain, but many questions remain about their roles in neuronal function. Glutathione peroxidase has been localized in glial cells, and its expression is increased surrounding the damaged area in Parkinson's disease and occlusive cerebrovascular disease, consistent with its protective role against oxidative damage. Selenoprotein P has been reported to possess antioxidant activities and the ability to promote neuronal cell survival. Recent studies in cell culture and gene knockout models support a function for selenoprotein P in delivery of selenium to the brain. mRNAs for other selenoproteins, including selenoprotein W, thioredoxin reductases, 15-kDa selenoprotein and type 2 iodothyronine deiodinase, are also detected in the brain. Future research directions will surely unravel the important functions of this class of proteins in the brain. [source] Glutathione peroxidase and viral replication: Implications for viral evolution and chemopreventionBIOFACTORS, Issue 1-4 2001Alan M. Diamond It is likely that several of the biological effects of selenium are due to its effects on selenoprotein activity. While the effects of the anti-oxidant selenoprotein glutathione peroxidase (GPx) on inhibiting HIV activation have been well documented, it is clear that increased expression of this enzyme can stimulate the replication and subsequent appearance of cytopathic effects associated with an acutely spreading HIV infection. The effects of GPx on both phases of the viral life cycle are likely mediated via its influence on signaling molecules that use reactive oxygen species, and similar influences on signaling pathways may account for some of the anti-cancer effects of selenium. Similarly, selenium can alter mutagenesis rates in both viral genomes and the DNA of mammalian cells exposed to carcinogens. Comparisons between the effects of selenium and selenoproteins on viral infections and carcinogenesis may yield new insights into the mechanisms of action of this element. [source] Glutathione Peroxidase-Based Amperometric Biosensor for the Detection of S -NitrosothiolsELECTROANALYSIS, Issue 21 2006Mustafa Musameh Abstract A new biosensor is described for the detection of S -nitrosothiols (RSNOs) based on their decomposition by immobilized glutathione peroxidase (GPx), an enzyme containing selenocysteine residue that catalytically produces nitric oxide (NO) from RSNOs. The enzyme is entrapped at the distal tip of a planar amperometric NO sensor. The new biosensor shows good sensitivity, linearity, reversibility, and response times towards various RSNO species in PBS buffer, pH,7.4 . In most cases, the response time is less than 5,min, and the response is linear up to 6 ,M of the tested RSNO species. The lowest detection limit is obtained for S -nitrosocysteine (CysNO), at approx. 0.2,,M. The biosensor's sensitivity is not affected by the addition of EDTA as a chelating agent; an advantage over other potential catalytic enzymes that contain copper ion centers, such as CuZn-superoxide dismutase and xanthine oxidase. However, lifetime of the new sensor is limited, with sensitivity decrease of 50% after two days of use. Nonetheless, the new amperometric GPx based RSNO sensor could prove useful for detecting relative RSNO levels in biological samples, including whole blood. [source] Alterations of plasma antioxidants and mitochondrial DNA mutation in hair follicles of smokersENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 3 2002Chin-San Liu Abstract The effects of long-term smoking on mitochondrial DNA (mtDNA) deletions in hair follicles were investigated in subjects with different antioxidant capacity. Twenty-two male smokers with a smoking index of greater than 5 pack-years and without any known systemic diseases were recruited for this study. Forty healthy nonsmoking males were included as controls. We found that the concentrations of ascorbate and ,-tocopherol and the activities of glutathione S -transferase (GST) and glutathione peroxidase in blood plasma were significantly decreased in smokers. The levels of glutathione and protein thiols in whole blood and the incidence of a 4,977 bp deletion of mtDNA (dmtDNA) in hair follicles were significantly increased in smokers. A significantly higher incidence of the 4,977 bp dmtDNA was found in smokers with plasma GST activity less than 5.66 U/l (OR = 7.2, P = 0.020). Using multiple covariate ANOVA and logistic regression, we found that age and low plasma GST activity were the only two risk factors for the 4,977 bp dmtDNA. These results suggest that smoking depletes antioxidants and causes mtDNA deletions and that plasma GST may play an important role in the preservation of the mitochondrial genome in tissue cells of smokers. Environ. Mol. Mutagen. 40:168,174, 2002. © 2002 Wiley-Liss, Inc. [source] Malathion-induced oxidative stress in human erythrocytes and the protective effect of vitamins C and E in vitroENVIRONMENTAL TOXICOLOGY, Issue 3 2009Dilek Durak Abstract Malathion is an organophosphate (OP) pesticide that has been shown to induce oxidative stress in erythrocytes through the generation of free radicals and alteration of the cellular antioxidant defense system. We examined the effect of several different doses of malathion (25, 75, 200 ,M), or malathion in combination with vitamin C (VC; 10 ,M) or vitamin E (VE; 30 ,M), on the levels of malondialdehyde (MDA), and superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities in human erythrocytes in vitro. Erythrocytes were incubated under various treatment conditions (malathion alone, vitamins alone, or malathion plus vitamin) at 37°C for 60 min, and the levels of MDA, and SOD, CAT and GPx activities, were determined. Treatment with malathion alone increased the levels of MDA and decreased SOD, CAT, and GPx activities in erythrocytes (P < 0.05). There were no statistical differences among VC-treated, VE-treated, or VC + VE-treated erythrocyes, as compared with nontreated control cells. Treatment of cells with malathion + VC, malathion + VE, or a combination of all three agents prevented malathion-induced changes in antioxidant enzyme activity and lipid peroxidation. However, this effect was seen only at low concentrations of malathion (25 and 75 ,M), and the combination of VC + VE had a more protective effect than VC or VE alone. These results indicated that the presence of vitamins at concentrations that are similar to the levels found in plasma have no effect on malathion-induced toxicity in erythrocytes at a concentration of malathion (200 ,M) that is typically used in pesticides. © 2008 Wiley Periodicals, Inc. Environ Toxicol, 2009. [source] Hepatoprotective efficacy of certain flavonoids against microcystin induced toxicity in miceENVIRONMENTAL TOXICOLOGY, Issue 5 2007R. Jayaraj Abstract Toxic cyanobacteria (blue-green algae) water blooms have become a serious problem in several industrialized areas of the world. Microcystin-LR (MC-LR) is a cyanobacterial heptapeptide that represents acute and chronic hazards to animal and human health. Identification of suitable chemprotectants against microcystin is essential considering human health hazards. In the present study, we have evaluated the protective efficacy of three flavanoids namely quercetin (200 mg/kg), silybin (400 mg/kg), and morin (400 mg/kg)] pretreatment against microcystin toxicity (0.75 LD50, 57.5 ,g/kg) in mice. Various biochemical variables were measured to study the recovery profile of protected animals at 1- and 3-days post-toxin treatment. The serum alanine amino transferase (ALT) shows 17-fold increase in MC-LR treated animals compared with control group at 1 day. The silybin and quercetin group showed a decrease in level of ALT compared with MC-LR group but still higher than control group. No significant protection was observed with aspartate aminotransaminase (AST) and lactate dehydrogenase (LDH) levels in flavanoid-treated groups at 1-day post-treatment. But at 3 days, the serum levels of AST and ALT were normalized to control values, but the serum LDH levels were still significantly higher than the control group. No significant changes were observed in glutathione peroxidase and reduced glutathione levels at both 1- and 3-day postexposure. The catalase activity shows a significant decrease in quercetin-treated animals at 3-day postexposure. The protein phosphatase was significantly inhibited in MC-LR group compared to control. The silybin pretreated group showed recovery after 1 day. At 3 days, the PPAse activity was reversed to control values in all the flavanoid-treated groups. Immunoblotting analysis showed microcystin-PPAse adduct in liver tissues of toxin-treated as well as flavanoid-treated mice even after 3 days. The results of this study show that flavanoids, quercetin, silybin, and morin could reverse the hepatotoxic effects of MC-LR in vivo. © 2007 Wiley Periodicals, Inc. Environ Toxicol 22: 472,479, 2007. [source] Attenuating effects of natural organic matter on microcystin toxicity in zebra fish (Danio rerio) embryos,benefits and costs of microcystin detoxicationENVIRONMENTAL TOXICOLOGY, Issue 1 2006Jimena Cazenave Abstract To contribute to the understanding of joined factors in the environment, impact of pure microcystins (-RR and -LF) on zebra fish (Danio rerio) embryos were investigated individually and in combination with a natural organic matter (NOM). The applied NOM was a reverse osmosis isolate from Lake Schwarzer See (i.e., Black Lake, BL-NOM). Teratogenic effects were evaluated through changes in embryonic development within 48 h of exposure. Detoxication activities were assessed by the activities of phase II biotransformation enzymes, soluble and microsomal glutathione S -transferase (s, mGST). Oxidative stress was assessed by determining both the production of hydrogen peroxide and by analyzing the activities of the antioxidative enzymes, guajacol peroxidase (POD), catalase (CAT), glutathione peroxidase (GPx), and the glutathione restoring enzyme glutathione reductase (GR). Energetic costs were evaluated by determining contents of fat, carbohydrates, and proteins in both exposed and control embryos. BL-NOM attenuated toxic effects of MC-LF and MC-RR verified by less pronounced teratological effects within 24 h, in particular, as well as less rise in the activity of s-GST, when compared with embryos exposed to either pure toxins or in combination with organic matter. BL-NOM also diminished oxidative effects caused by MC-LF; however, it failed to attenuate oxidative stress caused by MC-RR. Content of lipids was significantly reduced in exposed embryos following a trend similar to that obtained with teratological and enzymatic assays confirming the attenuating effect of BL-NOM. Physiological responses to microcystins and NOM required energetic costs, which were compensated to the expense of the energy resources of the yolk, which in turn might affect the normal development of embryos. © 2006 Wiley Periodicals, Inc. Environ Toxicol 21: 22,32, 2006. [source] Effects of dietary N -acetylcysteine on the oxidative stress induced in tilapia (Oreochromis Niloticus) exposed to a microcystin-producing cyanobacterial water bloom,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2009María Puerto Abstract Fish can be exposed to toxic cyanobacterial cells in natural waters and fish farms and suffer from oxidative damage. The present study investigates the effects of N-acetylcysteine (NAC), a glutathione (GSH) precursor, on the oxidative stress induced by Microcystis cyanobacterial cells containing microcystins (MCs) in tilapia fish (Oreochromis niloticus). Variation in lipid peroxidation (LPO) levels, carbonyl group content, reduced glutathione to oxidized glutathione ratio (GSH: GSSG), and catalase (Enzyme Commission [EC] 1.11.1.6), superoxide dismutase (SOD; EC 1.15.1.1), glutathione reductase (GR; EC 1.8.1.7), glutathione peroxidase (GPx; EC 1.11.1.9), and glutathione S-transferase (EC 2.5.1.18) activities in liver and kidney of tilapia exposed to a single oral dose of 120 ,g MC-LR (with leucine [L] and arginine [R])/fish and killed in 24 h were investigated in the absence and presence of 20.0, 44.0, and 96.8 mg NAC/fish/d. Results showed a protective role of NAC, depending on the dose and the biomarker considered. The increase in LPO (1.9-and 1.4-fold in liver and kidney, respectively) and the decreased protein content and GSH:GSSG in the liver induced by MCs were recovered mainly by the lower doses of NAC employed. Antioxidant enzyme activities increased (range, 1.4-to 1.7-fold) by MCs also were ameliorated by NAC, although the highest level used induced significant alteration of some enzymatic activities, such as SOD, GPx, and GR. Thus, NAC can be considered to be a useful chemoprotectant that reduces hepatic and renal oxidative stress in the prophylaxis and treatment of MC-related intoxications in fish when careful attention is given to its application dose because of its own pro-oxidant activity, as shown in the present study at 96.8 mg NAC/ fish/d. [source] The role of biomarkers to assess oil-contaminated sediment quality using toxicity tests with clams and crabs,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 6 2008Carmen Morales-Caselles Abstract A 28-d bioassay was conducted with two invertebrate species with different feeding habits, the clam Ruditapes philippinarum and the shore crab Carcinus maenas. The purpose of the present study was to assess the quality of sediments affected by oil spills in different areas of the Spanish coast. The organisms were exposed to environmental samples of oil-contaminated sediments during four weeks and, after the experiment, a suite of biomarkers of exposure was measured: The phase one detoxification system was assessed by ethoxyresorufin- O -deethylase (EROD) activity; glutathione- S -transferase (GST) is a phase-two detoxification enzyme but also is implicated in oxidative stress events; glutathione peroxidase (GPX), glutathione reductase (GR), and the ferric reducing ability of plasma (FRAP) assay were analyzed to determine the antioxidant activity of the tissues. The biomarker results were correlated with the chemical compounds bound to sediments (polycyclic aromatic hydrocarbons [PAHs], polychlorinated biphenyls [PCBs], Zn, Cd, Pb, Cu, Ni, Co, V) and a principal component analysis was carried out with the purpose of linking all the variables and to detect those contaminated sediments potentially harmful to the biota. Results showed induction of biomarkers in both invertebrate species and significant differences (p < 0.05; p < 0.01) were established among sediments affected by different spills. The use of the selected biomarkers together with the sediment chemical analysis assesses the bioavailability of contaminants and has proven to be a suitable tool to monitor the environmental quality of sediments affected by oil spills. [source] Oral vitamin E supplementation on oxidative stress, vitamin and antioxidant status in intensely exercised horsesEQUINE VETERINARY JOURNAL, Issue S36 2006C. A. WILLIAMS Summary Reasons for performing study: Vitamin E is the most commonly supplemented antioxidant in horses; however, previous research is not conclusive as to the recommended level for exercising horses. Objective: To evaluate the effects of 3 levels of vitamin E supplementation on oxidative stress and vitamin/antioxidant status in intensely exercised horses to determine the optimal level of vitamin E supplementation. Methods: Twelve unfit Standardbreds were divided into 3 groups, supplemented orally with 0 (CON), 5000 (MOD), or 10,000 (HI) iu/day of DL-,-tocopheryl acetate. The 3 times 3 Latin square design consisted of three 4 week supplementation periods with 4 week wash out periods between. After each period, horses underwent a treadmill interval exercise test. Blood samples were collected and heart rate (HR) measured before, during and after exercise. Data were analysed using ANOVA with repeated measures in SAS. Results: The CON group had lower HR throughout the test compared to the MOD and HI groups (P<0.05). There was an increase in plasma retinol (RET), ,-carotene (BC), red blood cell total glutathione and glutathione peroxidase with exercise (P<0.05), but all groups returned to baseline after 24 h. Plasma ,-tocopherol (TOC) increased from baseline with exercise (P<0.0001) in all groups; treatment differences were observed at 24 h (P<0.05). The HI and CON groups had lower BC compared to the MOD group (P = 0.05). Conclusions: Horses supplemented with vitamin E, at nearly 10-times the 1989 NRC recommended level, did not experience lower oxidative stress compared to control horses. Additionally, lower plasma BC levels observed in the HI group, which may indicate that vitamin E has an inhibitory effect on BC metabolism. Potential relevance: Supplementation above control levels is not more beneficial to oxidative stress and antioxidant status in intensely exercising horses; indeed, levels 10 times in excess may be detrimental to BC and should be avoided. [source] BRIEF REPORT: Increased blood oxidative stress in amphetamine usersADDICTION BIOLOGY, Issue 1 2010Piyarat Govitrapong ABSTRACT Amphetamine derivatives have been shown to be a potential brain neurotoxin based on the production of free radicals that occurs after administration. The purpose of this study was to examine the lipid peroxidation and antioxidant enzymes in the blood of amphetamine users. The plasma lipid peroxidation was determined and reported as thiobarbituric acid reactive substance and was significantly increased (+21%), whereas the activities of the erythrocyte antioxidant enzymes glutathione peroxidase, catalase, and superoxide dismutase were significantly decreased (,32%, ,14% and ,31%, respectively) in amphetamine users. These results implicated the potential role of oxidative stress in amphetamine-induced neurotoxicity. [source] Adaptative response of antioxidant enzymes in different areas of rat brain after repeated d -amphetamine administrationADDICTION BIOLOGY, Issue 3 2001Félix Carvalho d-Amphetamine has been shown to be a potential brain neurotoxic agent, particularly to dopaminergic neurones. Reactive oxygen species indirectly generated by this drug have been indicated as an important factor in the appearance of neuronal damage but little is known about the adaptations of brain antioxidant systems to its chronic administration. In this study, the activities of several antioxidant enzymes in different areas of rat brain were measured after repeated administration of d-amphetamine sulphate (sc, 20 mg/kg/day, for 14 days), namely glutathione-S-transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GRed), catalase, and superoxide dismutase (SOD). When compared to a pair-fed control group, d-amphetamine treatment enhanced the activity of GST in hypothalamus to 167%, GPx in striatum to 127%, in nucleus accumbens to 192%, and in medial prefrontal cortex to 139%, GRed in hypothalamus to 139%, as well as catalase in medial prefrontal cortex to 153%. However, the same comparison revealed a decrease in the activity of GRed in medial pre-frontal cortex by 35%. Food restriction itself reduced GRed activity by 49% and enhanced catalase activity to 271% in nucleus accumbens. The modifications observed for the measured antioxidant enzymes reveal that oxidative stress probably plays a role in the deleterious effects of this drug in CNS and that, in general, the brain areas studied underwent adaptations which provided protection against the continuous administration of the drug. [source] Antioxidant and anti-inflammatory activities of melanocortin peptidesEXPERIMENTAL DERMATOLOGY, Issue 9 2004J. W. Haycock ,-Melanocyte-stimulating hormone (,-MSH) has previously been identified as a potent anti-inflammatory agent in various tissues including the skin. It operates by binding to the melanocortin-1 receptor (MC-1R) which results in the elevation of cyclic AMP. ,-MSH opposes the action of several proinflammatory cytokines including tumour necrosis factor-, (TNF-,). We have shown that ,-MSH can inhibit TNF-,-stimulated activation of nuclear factor-,B (NF-,B) in human cultured melanocytes, melanoma cells, keratinocytes, fibroblasts, Schwann cells and olfactory ensheathing cells. It also inhibits TNF-,-stimulated upregulation of intercellular adhesion molecule-1 (ICAM-1) in many of these cells and can inhibit peroxide-stimulated activation of glutathione peroxidase, suggesting an antioxidant role. ,-MSH is also able to stimulate intracellular calcium release in keratinocytes and fibroblasts (which do not readily show detectible cyclic AMP elevation) but only in the presence of PIA (an adenosine agonist). The carboxyl terminal tripeptides KPV/KP-D-V are reported to be the minimal sequences necessary to convey anti-inflammatory potential, but evidence on how they act is not fully known. Stable transfection of Chinese hamster ovary cells with MC-1R suggests that the KPV peptides operate by this receptor, at least by elevating intracellular calcium. Elevation of cyclic AMP by these tripeptides has not been detected in any cell type studied; however, calcium elevation can inhibit TNF-,-stimulated NF-,B activity (as for cyclic AMP). In conclusion, the MSH peptides convey anti-inflammatory and antioxidant activity in many cell types in skin and nerve, by counteracting proinflammatory cytokine signalling. The KPV peptides appear to act functionally via the MC-1R and can also elevate intracellular calcium. [source] Hydroperoxide reduction by thioredoxin-specific glutathione peroxidase isoenzymes of Arabidopsis thalianaFEBS JOURNAL, Issue 24 2006Aqib Iqbal Arabidopsis thaliana contains eight glutathione peroxidase (GPX) homologs (AtGPX1,8). Four mature GPX isoenzymes with different subcellular distributions, AtGPX1, -2, -5 and -6, were overexpressed in Escherichia coli and characterized. Interestingly, these recombinant proteins were able to reduce H2O2, cumene hydroperoxide, phosphatidylcholine and linoleic acid hydroperoxides using thioredoxin but not glutathione or NADPH as an electron donor. The reduction activities of the recombinant proteins with H2O2 were 2,7 times higher than those with cumene hydroperoxide. Km values for thioredoxin and H2O2 were 2.2,4.0 and 14.0,25.4 µm, respectively. These finding suggest that GPX isoenzymes may function to detoxify H2O2 and organic hydroperoxides using thioredoxin in vivo and may also be involved in regulation of the cellular redox homeostasis by maintaining the thiol/disulfide or NADPH/NADP balance. [source] Ferulic acid, a natural protector against carbon tetrachloride-induced toxicityFUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 4 2005M. Srinivasan Abstract The present work is aimed at evaluating the protective effect of ferulic acid (FA), a naturally occurring phenolic compound on CCl4 induced toxicity. The activities of liver markers (alanine transaminase, aspartate transaminase, alkaline phosphatase, , -glutamyl transferase), lipid peroxidative index (thiobarbituric acid-reactive substances, hydroperoxides, nitric oxide, protein carbonyl content), the antioxidant status (superoxide dismutase, catalase, glutathione peroxidase and reduced glutathione) were used as biomarkers to monitor the protective role of FA. The liver marker enzymes in plasma and lipid peroxidative index in liver and kidney were increased in CCl4 -treated groups, which were decreased significantly on treatment with FA. The antioxidants, which were depleted in CCl4 -treated groups, were improved significantly by FA treatment. Administration of FA to normal rats did not produce any harmful effects. Thus our results show that FA is an effective antioxidant without any side-effects and may be a great gain in the current search for natural therapy. [source] Selenium metabolism in zebrafish: multiplicity of selenoprotein genes and expression of a protein containing 17 selenocysteine residuesGENES TO CELLS, Issue 12 2000Gregory V. Kryukov Fish are an important source of selenium in human nutrition and the zebrafish is a potentially useful model organism for the study of selenium metabolism and its role in biology and medicine. Selenium is present in vertebrate proteins in the form of selenocysteine (Sec), the 21st natural amino acid in protein which is encoded by UGA. We report here the detection of 18 zebrafish genes for Sec-containing proteins. We found two zebrafish orthologs of human SelT, glutathione peroxidase 1 and glutathione peroxidase 4, and single orthologs of several other selenoproteins. In addition, new zebrafish selenoproteins were identified that were distant homologues of SelP, SelT and SelW, but their direct orthologs in other species are not known. This multiplicity of selenoprotein genes appeared to result from gene and genome duplications, followed by the retention of new selenoprotein genes. We found a zebrafish selenoprotein P gene (designated zSelPa) that contained two Sec insertion sequence (SECIS) elements and encoded a protein containing 17 Sec residues, the largest number of Sec residues found in any known protein. In contrast, a second SelP gene (designated zSelPb) was also identified that contained one SECIS element and encoded a protein with a single Sec. We found that zSelPa could be expressed and secreted by mammalian cells. The occurrence of zSelPa and zSelPb suggested that the function of the N-terminal domain of mammalian SelP proteins may be separated from that of the C-terminal Sec-rich sequence: the N-terminal domain containing the UxxC motif is likely involved in oxidoreduction, whereas the C-terminal portion of the protein may function in selenium transport or storage. Our data also suggest that the utilization of Sec is more common in zebrafish than in previously characterized species, including mammals. [source] Mitochondrial superoxide dismutase and glutathione peroxidase in idiosyncratic drug-induced liver injury,,HEPATOLOGY, Issue 1 2010M. Isabel Lucena Drug-induced liver injury (DILI) susceptibility has a potential genetic basis. We have evaluated possible associations between the risk of developing DILI and common genetic variants of the manganese superoxide dismutase (SOD2 Val16Ala) and glutathione peroxidase (GPX1 Pro200Leu) genes, which are involved in mitochondrial oxidative stress management. Genomic DNA from 185 DILI patients assessed by the Council for International Organizations of Medical Science scale and 270 sex- and age-matched controls were analyzed. The SOD2 and GPX1 genotyping was performed using polymerase chain reaction restriction fragment length polymorphism and TaqMan probed quantitative polymerase chain reaction, respectively. The statistical power to detect the effect of variant alleles with the observed odds ratio (OR) was 98.2% and 99.7% for bilateral association of SOD2 and GPX1, respectively. The SOD2 Ala/Ala genotype was associated with cholestatic/mixed damage (OR = 2.3; 95% confidence interval [CI] = 1.4-3.8; corrected P [Pc] = 0.0058), whereas the GPX1 Leu/Leu genotype was associated with cholestatic injury (OR = 5.1; 95%CI = 1.6-16.0; Pc = 0.0112). The presence of two or more combined risk alleles (SOD2 Ala and GPX1 Leu) was more frequent in DILI patients (OR = 2.1; 95%CI = 1.4-3.0; Pc = 0.0006). Patients with cholestatic/mixed injury induced by mitochondria hazardous drugs were more prone to have the SOD2 Ala/Ala genotype (OR = 3.6; 95%CI = 1.4-9.3; Pc = 0.02). This genotype was also more frequent in cholestatic/mixed DILI induced by pharmaceuticals producing quinone-like or epoxide metabolites (OR = 3.0; 95%CI = 1.7-5.5; Pc = 0.0008) and S-oxides, diazines, nitroanion radicals, or iminium ions (OR = 16.0; 95%CI = 1.8-146.1; Pc = 0.009). Conclusion: Patients homozygous for the SOD2 Ala allele and the GPX1 Leu allele are at higher risk of developing cholestatic DILI. SOD2 Ala homozygotes may be more prone to suffer DILI from drugs that are mitochondria hazardous or produce reactive intermediates. (HEPATOLOGY 2010) [source] Oxidative stress and hippocampus in a low-grade hepatic encephalopathy model: protective effects of curcuminHEPATOLOGY RESEARCH, Issue 11 2008Diego Martín Roselló Aim:, The present study was performed on prehepatic portal hypertensive rats, a model of low-grade hepatic encephalopathy, designed to evaluate whether oxidative stress was a possible pathway implicated in hippocampal damage and if so, the effect of an anti-oxidant to prevent it. Methods:, Prehepatic portal hypertension was induced by a regulated portal vein stricture. Oxidative stress was investigated by assessing related biochemical parameters in rat hippocampus. The effect of the anti-oxidant curcumin, administered in a single i.p. dose of 100 mg/kg on the seventh, ninth and eleventh days after surgery, was evaluated. Results:, Oxidative stress in the rat hippocampal area was documented. Curcumin significantly decreased tissue malondialdehyde levels and significantly increased glutathione peroxidase, catalase and superoxide dismutase activities in the hippocampal tissue of portal hypertensive rats. Conclusion:, Oxidative stress was found to be implicated in the hippocampal damage and curcumin protected against this oxidative stress in low-grade hepatic encephalopathic rats. These protective effects may be attributed to its anti-oxidant properties. [source] Potentiation of isoniazid-induced liver toxicity by rifampicin in a combinational therapy of antitubercular drugs (rifampicin, isoniazid and pyrazinamide) in Wistar rats: A toxicity profile studyHEPATOLOGY RESEARCH, Issue 10 2007Sheikh Abdullah Tasduq Aim:, Biochemical characterization of long-term toxic manifestations of anti-tubercular (anti-TB) drugs , rifampicin (RIF), isoniazid (INH) and pyrazinamide (PZA) , individually and in two combinations: (i) RIF + INH, and (ii) RIF + INH + PZA in Wistar rats. Methods:, Animals received anti-TB drugs , alone or in combination , once daily p.o. for up to 90 days (doses, in mg/kg: RIF, 250; INH, 50; PZA, 100). Assays for alanine aminotransferase (ALT), alkaline phosphatase (ALP), bilirubin (serum) and lipid peroxidation (LPO), glutathione (GSH), glutathione peroxidase (GPx), catalase, Na+K+-ATPase and CYP 2E1 (liver) were performed to assess liver toxicity. Clinical biochemistry was done by commercial kits. Determinations were made at 0, 15, 30 and 90 days of treatment schedule. Results:, Anti-TB drugs-treated animals showed abnormal rises or falls (>1.5,2 fold) in the serum/liver parameters. Mild hyperlipidemia, hypercholesterolemia and hyperuricemia were the other pathologies. Of all the treated groups, INHalone or in combination with other drugs produced a progressive enhancement of toxicity over 15,90 days. The in vivo results were further supported by in vitro results (MTT assay, GSH and LPO) in primary cultures of rat hepatocyte. Results indicated that anti-TB drugs in combination: (i) caused membrane damage resulting in leakage of ALT, ALP and bilirubin; (ii) caused imbalance in endogenous enzymatic oxidant,antioxidant defense via increased lipid peroxidation and in glutathione homeostasis; and (iii) enhanced the CYP 2E1-mediated bioactivation mechanism. Conclusion:, Toxicity manifestations seemed to be heptocytic injury targeted at hepatocytes, bile ducts or sinusoidal cells related to hepatitis and primary biliary cholestasis. [source] Use of activated protein C has no avail in the early phase of acute pancreatitisHPB, Issue 6 2008Sinan Akay Abstract Objectives. Sepsis and acute pancreatitis have similar pathogenetic mechanisms that have been implicated in the progression of multiple organ failure. Drotrecogin alfa, an analogue of endogenous protein C, reduces mortality in clinical sepsis. Our objective was to evaluate the early therapeutic effects of activated protein C (APC) in a rat model of acute necrotizing pancreatitis. Subjects and method. Acute necrotizing pancreatitis was induced by intraductal injection of 5% Na taurocholate. Hourly bolus injections of saline or recombinant human APC (drotrecogin alfa) was commenced via femoral venous catheter four hours after the induction of acute pancreatitis. The experiment was terminated nine hours after pancratitis induction. Animals in group one (n=20) had a sham operation while animals in group two (n=20) received saline and animals in group three (n=20) received drotrecogin alfa boluses after acute pancreatitis induction. Pancreatic tissue for histopathologic scores and myeloperoxidase, glutathione reductase, glutathione peroxidase, and catalase activites were collected, and blood for serum amylase, urea, creatinine, and inleukin-6 measurements was withdrawn. Results. Serum amylase activity was significantly lower in the APC treated group than the untreated group (17,435±432 U/L vs. 27,426±118 U/L, respectively). While the serum interleukin-6 concentration in the APC untreated group was significantly lower than the treated group (970±323 pg/mL vs. 330±368 pg/mL, respectively). Conclusion. In the early phase of acute pancreatitis, drotrecogin alfa treatment did not result in a significant improvement in oxidative and inflammatory parameters or renal functions. [source] Oxidative stress parameters after combined fluoxetine and acetylsalicylic acid therapy in depressive patientsHUMAN PSYCHOPHARMACOLOGY: CLINICAL AND EXPERIMENTAL, Issue 4 2009Piotr Ga, ecki Abstract Objective There are numerous reports indicating disturbed equilibrium between oxidative processes and antioxidative defense in patients with depression. Moreover, depressive patients are characterized by the presence of elements of an inflammatory process, which is one of the sources of reactive oxygen species (ROS). In view of the above, it was decided to study both the effect of fluoxetine monotherapy and that of fluoxetine co-administered with acetylsalicylic acid on lipid peroxidation and antioxidative defense in patients with the first depressive episode in their life. Method Seventy seven patients with major depressive disorder (MDD), divided into two groups were included in the study. The first group, consisting of 52 patients, received fluoxetine 20 mg, and the second one, in addition to fluoxetine 20 mg, received 150 mg of acetylsalicylic acid. The activity of antioxidative enzymes, copper-zinc superoxide dismutase (CuZnSOD, SOD1), catalase (CAT), glutathione peroxidase (GPSH-x) and the concentration of malonyldialdehyde (MDA) was determined in erythrocytes, whereas the total antioxidant status (TAS) was determined in the plasma. All parameters were measured before and after three month therapy. Results The obtained results indicate a significant decrease in the activity of SOD1, CAT and GSHP-x, as well as in MDA concentration after the combined therapy. Also a significant TAS increase was observed after the combined therapy. The study demonstrated that combined therapy with fluoxetine and ASA is characterized by the same efficacy and clinical safety as fluoxetine monotherapy, resulting additionally in improvement of oxidative stress parameters in the patients treated for depression. Copyright © 2009 John Wiley & Sons, Ltd. [source] In vivo astaxanthin treatment partially prevents antioxidant alterations in dental pulp from alloxan-induced diabetic ratsINTERNATIONAL ENDODONTIC JOURNAL, Issue 11 2010M. F. Leite Leite MF, de Lima A, Massuyama MM, Otton R.In vivo astaxanthin treatment partially prevents antioxidant alterations in dental pulp from alloxan-induced diabetic rats. International Endodontic Journal, 43, 959,967, 2010. Abstract Aim, To evaluate the effect of astaxanthin on antioxidant parameters of dental pulp from diabetic rats. The hypothesis tested was that supplementation of diabetic rats with astaxanthin might eliminate, or at least attenuate, the defect in their antioxidative status. Methodology, Wistar rats (n = 32) were divided into four groups: untreated control, treated control, untreated diabetic and treated diabetic rats. A prophylactic dose of astaxanthin (20 mg kg,1 body weight) was administered daily by gavage for 30 days. On day 23, diabetes was induced by injection of alloxan (60 mg kg,1 body weight). After 7 days of diabetes induction, the rats were killed, and pulp tissue from incisor teeth removed. Superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx) and reductase activities were determined. Data were compared by anova and the Newman,Keuls test (P < 0.05). Results, Diabetes caused a reduction in SOD, GPx and reductase activity in dental pulp tissue. Astaxanthin had no effect on SOD and catalase activities; however, it stimulated GPx in control and diabetic rats. Conclusions, Diabetes altered the antioxidant system in dental pulp tissue; astaxanthin partially improved the diabetic complications. [source] Native specific activity of glutathione peroxidase (GPx-1), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and glutathione reductase (GR) does not differ between normo- and hypomotile human sperm samplesINTERNATIONAL JOURNAL OF ANDROLOGY, Issue 1 2005FULVIO URSINI No abstract is available for this article. [source] Native specific activity of glutathione peroxidase (GPx-1), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and glutathione reductase (GR) does not differ between normo- and hypomotile human sperm samples,Authors' ReplyINTERNATIONAL JOURNAL OF ANDROLOGY, Issue 1 2005E. PANFILI No abstract is available for this article. [source] Enzymatic and immunochemical evaluation of phospholipid hydroperoxide glutathione peroxidase (PHGPx) in testes and epididymal spermatozoa of rats of different agesINTERNATIONAL JOURNAL OF ANDROLOGY, Issue 2 2002Federica Tramer Selenium (Se) and selenoproteins such as glutathione peroxidases are necessary for the proper development and fertilizing capacity of sperm cells. Phospholipid hydroperoxide glutathione peroxidase (PHGPx, E.C. 1.11.1.12) is a monomeric seleno-enzyme present in different mammalian tissues in soluble and bound form. Its function, like the other glutathione peroxidases, was originally viewed as a protective role against hydroperoxides, but direct and indirect evidence indicates that it has additional regulatory roles. PHGPx is present in testis cells and sperm cells, and its appearance is hormone regulated. We present here biochemical data, which clearly indicate that the enzyme specific activity in rat is age-dependent during the life-span monitored (from 36 to 365 days), with a maximum at 3 months of age in the testis germ cells and at 6 months of age in the isolated epididymal sperm cells. Western blotting and immunocytochemical analysis by means of anti-PHGPx antibodies show the different distribution and the strong binding of PHGPx in the testes and sperm cell subcellular compartments (nucleus, acrosome, mitochondria and residual bodies) of rats of different age. The presence of the protein exhibits in the testis cells a pattern different from that of the catalytic activity, with a maximum at 6 months of age. The subcellular distribution of PHGPx is qualitatively, but not quantitatively, unchanged during ageing. These different behaviours are compared and discussed. [source] |