Glutamate Transport (glutamate + transport)

Distribution by Scientific Domains


Selected Abstracts


The inflammatory cytokine, interleukin-1 beta, mediates loss of astroglial glutamate transport and drives excitotoxic motor neuron injury in the spinal cord during acute viral encephalomyelitis

JOURNAL OF NEUROCHEMISTRY, Issue 4 2008
Natalie A. Prow
Abstract Astrocytes remove glutamate from the synaptic cleft via specific transporters, and impaired glutamate reuptake may promote excitotoxic neuronal injury. In a model of viral encephalomyelitis caused by neuroadapted Sindbis virus (NSV), mice develop acute paralysis and spinal motor neuron degeneration inhibited by the AMPA receptor antagonist, NBQX. To investigate disrupted glutamate homeostasis in the spinal cord, expression of the main astroglial glutamate transporter, GLT-1, was examined. GLT-1 levels declined in the spinal cord during acute infection while GFAP expression was preserved. There was simultaneous production of inflammatory cytokines at this site, and susceptible animals treated with drugs that blocked IL-1, release also limited paralysis and prevented the loss of GLT-1 expression. Conversely, infection of resistant mice that develop mild paralysis following NSV challenge showed higher baseline GLT-1 levels as well as lower production of IL-1, and relatively preserved GLT-1 expression in the spinal cord compared to susceptible hosts. Finally, spinal cord GLT-1 expression was largely maintained following infection of IL-1,-deficient animals. Together, these data show that IL-1, inhibits astrocyte glutamate transport in the spinal cord during viral encephalomyelitis. They provide one of the strongest in vivo links between innate immune responses and the development of excitotoxicity demonstrated to date. [source]


Loss of metabotropic glutamate receptor-mediated regulation of glutamate transport in chemically activated astrocytes in a rat model of amyotrophic lateral sclerosis

JOURNAL OF NEUROCHEMISTRY, Issue 3 2006
Céline Vermeiren
Abstract Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by a selective loss of motor neurones accompanied by intense gliosis in lesioned areas of the brain and spinal cord. Glutamate-mediated excitotoxicity resulting from impaired astroglial uptake constitutes one of the current pathophysiological hypotheses explaining the progression of the disease. In this study, we examined the regulation of glutamate transporters by type 5 metabotropic glutamate receptor (mGluR5) in activated astrocytes derived from transgenic rats carrying an ALS-related mutated human superoxide dismutase 1 (hSOD1G93A) transgene. Cells from transgenic animals and wild-type littermates showed similar expression of glutamate,aspartate transporter and glutamate transporter 1 (GLT-1) after in vitro activation, whereas cells carrying the hSOD1 mutation showed a three-fold higher expression of functional mGluR5, as observed in the spinal cord of end-stage animals. In cells from wild-type animals, (S)-3,5-dihydroxyphenylglycine (DHPG) caused an immediate protein kinase C (PKC)-dependent up-regulation of aspartate uptake that reflected the activation of GLT-1. Although this effect was mimicked in both cultures by direct activation of PKC using phorbol myristate acetate, DHPG failed to up-regulate aspartate uptake in cells derived from the transgenic rats. The failure of activated mGluR5 to increase glutamate uptake in astrocytes derived from this animal model of ALS supports the theory of glutamate excitotoxicity in the pathogenesis of the disease. [source]


NAALADase (GCP II) inhibitors protect in models of amyotrophic lateral sclerosis (ALS)

JOURNAL OF NEUROCHEMISTRY, Issue 2002
A. G. Thomas
Chronic glutamate toxicity is implicated in the pathogenesis of ALS. The neuropeptide N-acetyl-aspartyl glutamate (NAAG) appears to function both as a storage form for glutamate and as a neuromodulator at glutamatergic synapses. Catabolism of NAAG by N-acetylated-,-linked acidic dipeptidase (NAALADase; also termed glutamate carboxypeptidase II), yields N-acetyl aspartate (NAA) and glutamate. Since prior studies demonstrate an up-regulation of NAALADase in motor cortex and increased levels of NAA and glutamate in the CSF of ALS patients, we hypothesized that inhibition of NAALADase could protect against neuronal degeneration in ALS. Neuroprotective effects of two NAALADase inhibitors were assessed. 2-(Phosphonomethyl)pentanedioic acid (2-PMPA) decreased motor neuron loss and prevented loss of choline acetyltransferase (ChAT) activity in an in vitro model of ALS wherein chronic glutamate toxicity was induced by blocking glutamate transport. Gross morphology was preserved in 2-PMPA-treated cultures. In a SOD-1 transgenic mouse model of ALS, oral administration of a structurally different NAALADase inhibitor (GPI 5693) increased survival by 29 days and delayed onset of clinical symptoms by 17 days. Preliminary analysis of spinal cord pathology revealed severe neuronal depletion and astrocytosis with white matter changes in control mice. In mice treated with GPI 5693, normal neuronal populations with modest vacuolar changes were observed. These data suggest that NAALADase inhibition may provide an exciting therapeutic approach to the devastating disease, ALS. [source]


Collapse of extracellular glutamate regulation during epileptogenesis: down-regulation and functional failure of glutamate transporter function in rats with chronic seizures induced by kainic acid

JOURNAL OF NEUROCHEMISTRY, Issue 3 2001
Yuto Ueda
We used northern and western blotting to measure the quantity of glutamate and GABA transporters mRNA and their proteins within the hippocampal tissue of rats with epileptogenesis. Chronic seizures were induced by amygdalar injection of kainic acid 60 days before death. We found that expression of the mRNA and protein of the glial glutamate transporters GLAST and GLT-1 were down-regulated in the kainic acid-administered group. In contrast, EAAC-1 and GAT-3 mRNA and their proteins were increased, while GAT-1 mRNA and protein were not changed. We performed in vivo microdialysis in the freely moving state. During the interictal state, the extracellular glutamate concentration was increased, whereas the GABA level was decreased in the kainic acid group. Following potassium-induced depolarization, glutamate overflow was higher and the recovery time to the basal release was prolonged in the kainic acid group relative to controls. Our data suggest that epileptogenesis in rats with kainic acid-induced chronic seizures is associated with the collapse of extracellular glutamate regulation caused by both molecular down-regulation and functional failure of glutamate transport. [source]


Mercury compounds disrupt neuronal glutamate transport in cultured mouse cerebellar granule cells

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 4 2005
Elena Fonfría
Abstract Cerebellar granule cells are targeted selectively by mercury compounds in vivo. Despite the affinity of mercury for thiol groups present in all cells, the molecular determinant(s) of selective cerebellar degeneration remain to be elucidated fully. We studied the effect of mercury compounds on neuronal glutamate transport in primary cultures of mouse cerebellar granule cells. Immunoblots probed with an antibody against the excitatory amino acid transporter (EAAT) neuronal glutamate transporter, EAAT3, revealed the presence of a specific band in control and mercury-treated cultures. Micromolar concentrations of both methylmercury and mercuric chloride increased the release of endogenous glutamate, inhibited glutamate uptake, reduced mitochondrial activity, and decreased ATP levels. All these effects were completely prevented by the nonpermeant reducing agent Tris-(2-carboxyethyl)phosphine (TCEP). Reduction of mitochondrial activity by mercuric chloride, but not by methylmercury, was inhibited significantly by 4,4,-diisothiocyanato-stilbene-2,2,-disulfonic acid (DIDS) and by reduced extracellular Cl, ion concentration. In addition, DIDS and low extracellular Cl, completely inhibited the release of glutamate induced by mercuric chloride, and produced a partial although significant reduction of that induced by methylmercury. We suggest that a direct inhibition of glutamate uptake triggers an imbalance in cell homeostasis, leading to neuronal failure and Cl, -regulated cellular glutamate efflux. Our results demonstrate that neuronal glutamate transport is a novel target to be taken into account when assessing mercury-induced neurotoxicity. © 2005 Wiley-Liss, Inc. [source]


Elevated endogenous GABA level correlates with decreased fMRI signals in the rat brain during acute inhibition of GABA transaminase

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 3 2005
Zhengguang Chen
Abstract Vigabatrin and gabaculine, both highly specific inhibitors of GABA (,-aminobutyric acid) transaminase, cause significant elevation of endogenous GABA levels in brain. The time course of GABA concentration after acute GABA transaminase inhibition was measured quantitatively in the ,-chloralose-anesthetized rat brain using in vivo selective homonuclear polarization transfer spectroscopy. The blood oxygenation level-dependent (BOLD) effect in functional magnetic resonance imaging (fMRI) has been considered to be coupled tightly to neuronal activation via the metabolic demand of associated glutamate transport. Correlated with the rise in endogenous GABA level after vigabatrin or gabaculine treatment, the intensity of BOLD-weighted fMRI signals in rat somatosensory cortex during forepaw stimulation was found to be reduced significantly. These results are consistent with previous findings that inhibition of GABA transaminase leads to augmented GABA release and potentiation of GABAergic inhibition. © 2004 Wiley-Liss, Inc. [source]


An intermediate in a new synthesis approach to ,-substituted ,-hydroxy­aspartame

ACTA CRYSTALLOGRAPHICA SECTION C, Issue 8 2003
Johny Wehbe
The crystal and molecular structure of 1- tert -butyl 4-ethyl (2,R,3,R,5,R,2S,3S)-3-bromo­methyl-3-hydroxy-2-[(2,-hydroxy-2,,6,,6,-tri­methyl­bi­cyclo­[3.1.1]­hept-3,-yl­idene)­amino]­succinate, C21H34BrNO6, is presented. This compound is an intermediate in the new synthetic route to ,-substituted ,-hydroxy­aspartates, which are blockers of glutamate transport. [source]


Excitatory Amino Acid Transporter EAAT-2 in Tangle-bearing Neurons in Alzheimer's Disease

BRAIN PATHOLOGY, Issue 4 2002
Dietmar Rudolf Thal
The excitatory amino acid transporter EAAT-2 is physiologically expressed in astrocytes. This study demonstrates that distinct subclasses of neurons exhibited EAAT-2 immunoreactivity in cases with Alzheimer's disease (AD). EAAT-2 was identified in the following types of neurons: Cortical pyramidal cells, fascia dentata granule cells, neurons of the basal nucleus of Meynert, the substantia nigra, the paraventricular nucleus of the hypothalamus, oral and central raphe nuclei, locus coeruleus, parabrachial nucleus, and neurons of the reticular formation of the brain stem. All EAAT-2-positive neurons displayed cytoskeletal abnormalities with abnormal ,-protein and often showed condensed and shrunken nuclei. None of the control cases without AD-related pathology showed EAAT-2-immunoreactive neurons. These results indicate that AD-related neurodegeneration is associated with the expression of the glutamate transporter EAAT-2 in altered neurons. Since an aberrant expression of EAAT-1 in neurons has recently been described, the finding of a neuronal expression of EAAT-2 strongly supports the hypothesis that abnormalities in the glutamate transport play an important role in the pathogenesis of AD. [source]