Glutamate Residue (glutamate + residue)

Distribution by Scientific Domains


Selected Abstracts


THIS ARTICLE HAS BEEN RETRACTED Tn5530 from Burkholderia cepacia strain 2a encodes a chloride channel protein essential for the catabolism of 2,4-dichlorophenoxyacetic acid

ENVIRONMENTAL MICROBIOLOGY, Issue 1 2007
Antonio Sebastianelli
Summary Chloride channel proteins (ClC) are found in living systems where they transport chloride ions across cell membranes. Recently, the structure/function of two prokaryotic ClC has been determined but little is known about the role of these proteins in the microbial metabolism of chlorinated compounds. Here we show that transposon Tn5530 from Burkholderia cepacia strain 2a encodes a ClC protein (BcClC) which is responsible for expelling Cl, ions generated during the catabolism of 2,4-dichlorophenoxyacetic acid (a chlorinated herbicide). We found that BcClC has the ability to transport Cl, ions across reconstituted proteoliposome membranes. We created two mutants in which the intrachannel glutamate residue of the protein, known to be responsible for opening and closing the channel (i.e. gating), was changed in order to create constitutively open and closed forms. We observed that cells carrying the closed-channel protein accumulated Cl, ions intracellularly leading to a decrease in intracellular pH, cell stasis and death. Further, we established that BcClC has the same gating mechanism as that reported for the ClC protein from Salmonella typhimurium. Our results show that the physiological role of ClC is to maintain cellular homeostasis which can be impaired by the catabolism of chlorinated compounds. [source]


The crystal structure of phenylpyruvate decarboxylase from Azospirillum brasilense at 1.5 Å resolution

FEBS JOURNAL, Issue 9 2007
Implications for its catalytic, regulatory mechanism
Phenylpyruvate decarboxylase (PPDC) of Azospirillum brasilense, involved in the biosynthesis of the plant hormone indole-3-acetic acid and the antimicrobial compound phenylacetic acid, is a thiamine diphosphate-dependent enzyme that catalyses the nonoxidative decarboxylation of indole- and phenylpyruvate. Analogous to yeast pyruvate decarboxylases, PPDC is subject to allosteric substrate activation, showing sigmoidal v versus [S] plots. The present paper reports the crystal structure of this enzyme determined at 1.5 Å resolution. The subunit architecture of PPDC is characteristic for other members of the pyruvate oxidase family, with each subunit consisting of three domains with an open ,/, topology. An active site loop, bearing the catalytic residues His112 and His113, could not be modelled due to flexibility. The biological tetramer is best described as an asymmetric dimer of dimers. A cysteine residue that has been suggested as the site for regulatory substrate binding in yeast pyruvate decarboxylase is not conserved, requiring a different mechanism for allosteric substrate activation in PPDC. Only minor changes occur in the interactions with the cofactors, thiamine diphosphate and Mg2+, compared to pyruvate decarboxylase. A greater diversity is observed in the substrate binding pocket accounting for the difference in substrate specificity. Moreover, a catalytically important glutamate residue conserved in nearly all decarboxylases is replaced by a leucine in PPDC. The consequences of these differences in terms of the catalytic and regulatory mechanism of PPDC are discussed. [source]


Probing the access of protons to the K pathway in the Paracoccus denitrificans cytochrome c oxidase

FEBS JOURNAL, Issue 2 2005
Oliver-M.
In recent studies on heme-copper oxidases a particular glutamate residue in subunit II has been suggested to constitute the entry point of the so-called K pathway. In contrast, mutations of this residue (E78II) in the Paracoccus denitrificans cytochrome c oxidase do not affect its catalytic activity at all (E78IIQ) or reduce it to about 50% (E78IIA); in the latter case, the mutation causes no drastic decrease in heme a3 reduction kinetics under anaerobic conditions, when compared to typical K pathway mutants. Moreover, both mutant enzymes retain full proton-pumping competence. While oxidized-minus-reduced Fourier-transform infrared difference spectroscopy demonstrates that E78II is indeed addressed by the redox state of the enzyme, absence of variations in the spectral range characteristic for protonated aspartic and glutamic acids at ,,1760 to 1710 cm,1 excludes the protonation of E78II in the course of the redox reaction in the studied pH range, although shifts of vibrational modes at 1570 and 1400 cm,1 reflect the reorganization of its deprotonated side chain at pH values greater than 4.8. We therefore conclude that protons do not enter the K channel via E78II in the Paracoccus enzyme. [source]


The high-resolution structure of pig heart succinyl-CoA:3-oxoacid coenzyme A transferase

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 7 2010
Shu-Fen Coker
The enzyme succinyl-CoA:3-oxoacid coenzyme A transferase (SCOT) participates in the metabolism of ketone bodies in extrahepatic tissues. It catalyses the transfer of coenzyme A (CoA) from succinyl-CoA to acetoacetate with a classical ping-pong mechanism. There is biochemical evidence that the enzyme undergoes conformational changes during the reaction, but no domain movements have been reported in the available crystal structures. Here, a structure of pig heart SCOT refined at 1.5,Å resolution is presented, showing that one of the four enzyme subunits in the crystallographic asymmetric unit has a molecule of glycerol bound in the active site; the glycerol molecule is hydrogen bonded to the conserved catalytic glutamate residue and is likely to occupy the cosubstrate-binding site. The binding of glycerol is associated with a substantial relative movement (a 13° rotation) of two previously undefined domains that close around the substrate-binding site. The binding orientation of one of the cosubstrates, acetoacetate, is suggested based on the glycerol binding and the possibility that this dynamic domain movement is of functional importance is discussed. [source]


New insights into the binding mode of coenzymes: structure of Thermus thermophilus,1 -pyrroline-5-carboxylate dehydrogenase complexed with NADP+

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 6 2007
Eiji Inagaki
,1 -Pyrroline-5-carboxylate dehydrogenase (P5CDh) is known to preferentially use NAD+ as a coenzyme. The kcat value of Thermus thermophilus P5CDh (TtP5CDh) is four times lower for NADP+ than for NAD+. The crystal structure of NADP+ -bound TtP5CDh was solved in order to study the structure,activity relationships for the coenzymes. The binding mode of NADP+ is essentially identical to that in the previously solved NAD+ -bound form, except for the regions around the additional 2,-phosphate group of NADP+. The coenzyme-binding site can only accommodate this group by the rotation of a glutamate residue and subtle shifts in the main chain. The 2,-phosphate of NADP+ increases the number of hydrogen bonds between TtP5CDh and NADP+ compared with that between TtP5CDh and NAD+. Furthermore, the phosphate of the bound NADP+ would restrict the `bending' of the coenzyme because of steric hindrance. Such bending is important for dissociation of the coenzymes. These results provide a plausible explanation of the lower turnover rate of NADP+ compared with NAD+. [source]


Design of a pH-sensitive pore-forming peptide with improved performance

CHEMICAL BIOLOGY & DRUG DESIGN, Issue 1 2004
D.H. Haas
Abstract:, GALA is a 30 residue synthetic peptide designed to interact with membranes in a pH-sensitive manner, with potential applications for intracellular drug and gene delivery. Upon reduction of the pH from neutral to acidic, GALA switches from random coil to , -helix, inserts into lipid bilayers, and forms oligomeric pores of defined size. Its simple sequence and well-characterized behavior make the peptide an excellent starting point to explore the effects of sequence on structure, pH sensitivity, and membrane affinity. We describe synthesis and characterization of two derivatives of GALA, termed GALAdel3E and YALA. GALAdel3E has a deletion of three centrally located glutamate residues from GALA, while YALA replaces one glutamate residue with the unusual amino acid 3,5-diiodotyrosine. Both derived peptides retain pH sensitivity, showing no ability to cause leakage of an encapsulated dye from unilamellar vesicles at pH 7.4 but substantial activity at pH 5. Unlike GALA, neither peptide undergoes a conformational change upon reduction of the pH, remaining , -helical throughout. Interestingly, the pH at which the peptides activate is shifted, with GALA becoming active at pH ,5.7, GALAdel3E at pH ,6.2, and YALA at pH ,6.7. Furthermore, the peptides GALAdel3E and YALA show improved activity compared with GALA for cholesterol-containing membranes, with YALA retaining the greatest activity. Improved activity in the presence of cholesterol and onset of activity in the critical range between pH 6 and 7 may make these peptides useful in applications requiring intracellular delivery of macromolecules, such as gene delivery or anti-cancer treatments. [source]


Surprises from the crystal structure of the hepatitis C virus NS2-3 protease,

HEPATOLOGY, Issue 6 2006
Jerome Gouttenoire Ph.D.
Hepatitis C virus is a major global health problem affecting an estimated 170 million people worldwide. Chronic infection is common and can lead to cirrhosis and liver cancer. There is no vaccine available and current therapies have met with limited success. The viral RNA genome encodes a polyprotein that includes 2 proteases essential for virus replication. The NS2-3 protease mediates a single cleavage at the NS2/NS3 junction, whereas the NS3-4A protease cleaves at 4 downstream sites in the polyprotein. NS3-4A is characterized as a serine protease with a chymotrypsin-like fold, but the enzymatic mechanism of the NS2-3 protease remains unresolved. Here, we report the crystal structure of the catalytic domain of the NS2-3 protease at 2.3 Å resolution. The structure reveals a dimeric cysteine protease with 2 composite active sites. For each active site, the catalytic histidine and glutamate residues are contributed by one monomer, and the nucleophilic cysteine by the other. The carboxy-terminal residues remain coordinated in the 2 active sites, predicting an inactive postcleavage form. Proteolysis through formation of a composite active site occurs in the context of the viral polyprotein expressed in mammalian cells. These features offer unexpected insights into polyprotein processing by hepatitis C virus and new opportunities for antiviral drug design. [source]


Design of a pH-sensitive pore-forming peptide with improved performance

CHEMICAL BIOLOGY & DRUG DESIGN, Issue 1 2004
D.H. Haas
Abstract:, GALA is a 30 residue synthetic peptide designed to interact with membranes in a pH-sensitive manner, with potential applications for intracellular drug and gene delivery. Upon reduction of the pH from neutral to acidic, GALA switches from random coil to , -helix, inserts into lipid bilayers, and forms oligomeric pores of defined size. Its simple sequence and well-characterized behavior make the peptide an excellent starting point to explore the effects of sequence on structure, pH sensitivity, and membrane affinity. We describe synthesis and characterization of two derivatives of GALA, termed GALAdel3E and YALA. GALAdel3E has a deletion of three centrally located glutamate residues from GALA, while YALA replaces one glutamate residue with the unusual amino acid 3,5-diiodotyrosine. Both derived peptides retain pH sensitivity, showing no ability to cause leakage of an encapsulated dye from unilamellar vesicles at pH 7.4 but substantial activity at pH 5. Unlike GALA, neither peptide undergoes a conformational change upon reduction of the pH, remaining , -helical throughout. Interestingly, the pH at which the peptides activate is shifted, with GALA becoming active at pH ,5.7, GALAdel3E at pH ,6.2, and YALA at pH ,6.7. Furthermore, the peptides GALAdel3E and YALA show improved activity compared with GALA for cholesterol-containing membranes, with YALA retaining the greatest activity. Improved activity in the presence of cholesterol and onset of activity in the critical range between pH 6 and 7 may make these peptides useful in applications requiring intracellular delivery of macromolecules, such as gene delivery or anti-cancer treatments. [source]