Home About us Contact | |||
Glomerular Numbers (glomerular + number)
Selected AbstractsUteroplacental insufficiency causes a nephron deficit, modest renal insufficiency but no hypertension with ageing in female ratsTHE JOURNAL OF PHYSIOLOGY, Issue 11 2009Karen M. Moritz In rats, uteroplacental insufficiency induced by uterine vessel ligation restricts fetal growth and impairs mammary development compromising postnatal growth. In male offspring, this results in a nephron deficit and hypertension which can be reversed by improving lactation and postnatal growth. Here, growth, blood pressure and nephron endowment in female offspring from mothers which underwent bilateral uterine vessel ligation (Restricted) on day 18 of pregnancy were examined. Sham surgery (Control) and a reduced litter group (Reduced at birth to 5, equivalent to Restricted group) were used as controls. Offspring (Control, Reduced, Restricted) were cross-fostered on postnatal day 1 onto a Control (normal lactation) or Restricted (impaired lactation) mother. Restricted-on-Restricted offspring were born small but were of similar weight to Control-on-Control by postnatal day 35. Blood pressure was not different between groups at 8, 12 or 20 weeks of age. Glomerular number was reduced in Restricted-on-Restricted offspring at 6 months without glomerular hypertrophy. Cross-fostering a Restricted pup onto a Control dam resulted in a glomerular number intermediate between Control-on-Control and Restricted-on-Restricted. Blood pressure, along with renal function, morphology and mRNA expression, was examined in Control-on-Control and Restricted-on-Restricted females at 18 months. Restricted-on-Restricted offspring did not become hypertensive but developed glomerular hypertrophy by 18 months. They had elevated plasma creatinine and alterations in renal mRNA expression of transforming growth factor-,1, collagen IV (,1) and matrix matelloproteinase-9. This suggests that perinatally growth restricted female offspring may be susceptible to onset of renal injury and renal insufficiency with ageing in the absence of concomitant hypertension. [source] Long-term effects of a midgestational asphyxial episode in the ovine fetusTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 10 2006Amanda E. O'Connell Abstract We and others have shown previously that fetuses at midgestation can survive 30 min of complete umbilical cord occlusion, although hydrops fetalis (or gross fetal edema) results. To investigate whether this hydrops resolves by late gestation and if there are any long-term consequences of the asphyxial insult on the heart and kidneys, eight fetuses were subjected to 30 min of complete umbilical cord occlusion at 0.6 gestation (90 days; term 150 days) and were compared to a sham group (n = 10). During the occlusion period, fetuses became severely hypoxemic, hypercapnemic, and acidotic, with both blood pressure and heart rate decreasing. Most variables had returned to normal by 2-hr recovery. At 129 ± 1 days of gestation, approximately 40 days post occlusion, some fetuses were still slightly hydropic as skin fold measurements were increased (P < 0.01), although fetal body weight was not different from the sham group. The two groups had similar heart and kidney weights, ventricular cardiac myocyte nucleation, and glomerular number. By contrast, brain weight was reduced by 37% (P < 0.001) and the cerebral lateral ventricles were grossly dilated. Lungs were 50% smaller than in sham fetuses (P < 0.001). Thus, the hydrops that develops at midgestation as a result of a severe asphyxial episode can, but does not always, fully resolve by late gestation. Also, while fetuses at midgestation can survive this asphyxial episode with no long-term impact in renal or cardiac size, nephron number, or cardiomyocyte nucleation, the brain and lungs are severely affected. Anat Rec Part A, 288A:1112,1120, 2006. © 2006 Wiley-Liss, Inc. [source] Intrauterine growth restriction reduces nephron number and renal excretory function in newborn piglets,ACTA PHYSIOLOGICA, Issue 2 2002R. Bauer ABSTRACT To examine the effects of intrauterine growth restriction on nephron number, renal circulation, and renal excretory functions in newborns, studies were conducted on 1-day-old anaesthetized piglets, divided into normal weight (n = 6) and intrauterine growth restricted (n = 6) piglets. Renal blood flow was measured by coloured microspheres, glomerular filtration rate was measured by inulin clearance, and osmotic clearance and fractional sodium excretion were calculated. In addition, an estimation of the nephron number was performed by counting representative glomerular numbers in microscopic sections. Newborn intrauterine growth restricted piglets exhibited a reduced glomerular filtration rate and osmotic clearance (P < 0.05), whereas renal blood flow and the filtration fraction as well as fractional sodium excretion were similar in normal weight and intrauterine growth restricted piglets. The nephron number was markedly reduced in intrauterine growth restricted piglets even if the nephron number was related to body weight (P < 0.01). There was a positive correlation between nephron number and glomerular filtration rate (r = 0.69, P < 0.05). Reduced glomerular filtration rate of newborn intrauterine growth restricted piglets is associated with a reduced nephron number. Thus, at birth, compensatory response of renal function due to nephron deficit does not exist in intrauterine growth restricted piglets. [source] Phenotypic plasticity in number of glomeruli and sensory innervation of the antennal lobe in leaf-cutting ant workers (A. vollenweideri)DEVELOPMENTAL NEUROBIOLOGY, Issue 4 2010Christina Kelber Abstract In the leaf-cutting ant Atta vollenweideri, the worker caste exhibits a pronounced size-polymorphism, and division of labor is dependent on worker size (alloethism). Behavior is largely guided by olfaction, and the olfactory system is highly developed. In a recent study, two different phenotypes of the antennal lobe of Atta vollenweideri workers were found: MG- and RG-phenotype (with/without a macroglomerulus). Here we ask whether the glomerular numbers are related to worker size. We found that the antennal lobes of small workers contain ,390 glomeruli (low-number; LN-phenotype), and in large workers we found a substantially higher number of ,440 glomeruli (high-number; HN-phenotype). All LN-phenotype workers and some small HN-phenotype workers do not possess an MG (LN-RG-phenotype and HN-RG-phenotype), and the remaining majority of HN-phenotype workers do possess an MG (HN-MG-phenotype). Using mass-staining of antennal olfactory receptor neurons we found that the sensory tracts divide the antennal lobe into six clusters of glomeruli (T1,T6). In LN-phenotype workers, ,50 glomeruli are missing in the T4-cluster. Selective staining of single sensilla and their associated receptor neurons revealed that T4-glomeruli are innervated by receptor neurons from the main type of olfactory sensilla, the Sensilla trichodea curvata. The other type of olfactory sensilla (Sensilla basiconica) exclusively innervates T6-glomeruli. Quantitative analyses of differently sized workers revealed that the volume of T6 glomeruli scales with the power of 2.54 to the number of Sensilla basiconica. The results suggest that developmental plasticity leading to antennal-lobe phenotypes promotes differences in olfactory-guided behavior and may underlie task specialization within ant colonies. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 70: 222,234, 2010. [source] |