Glomerular Layer (glomerular + layer)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


GABAB receptor expression and function in olfactory receptor neuron axon growth

DEVELOPMENTAL NEUROBIOLOGY, Issue 2 2004
Catherine A. Priest
Abstract Neurotransmitters have been implicated in regulating growth cone motility and guidance in the developing nervous system. Anatomical and electrophysiological studies show the presence of functional GABAB receptors on adult olfactory receptor neuron (ORN) nerve terminals. Using antisera against the GABAB R1a/b receptor isoforms we show that developing mouse olfactory receptor neurons express GABAB receptors from embryonic day 14 through to adulthood. GABAB receptors are present on axon growth cones from both dissociated ORNs and olfactory epithelial explants. Neurons in the olfactory bulb begin to express glutamic acid decarboxylase (GAD), the synthetic enzyme for GABA, from E16 through to adulthood. When dissociated ORNs were cultured in the presence of the GABAB receptor agonists, baclofen or SKF97541, neurite outgrowth was significantly reduced. Concurrent treatment of the neurons with baclofen and the GABAB receptor antagonist CGP54626 prevented the inhibitory effects of baclofen on ORN neurite outgrowth. These results show that growing ORN axons express GABAB receptors and are sensitive to the effects of GABAB receptor activation. Thus, ORNs in vivo may detect GABA release from juxtaglomerular cells as they enter the glomerular layer and use this as a signal to limit their outgrowth and find synaptic targets in regeneration and development. © 2004 Wiley Periodicals, Inc. J Neurobiol 60:154,165, 2004 [source]


Olfactory bulb hypoplasia in Prokr2 null mice stems from defective neuronal progenitor migration and differentiation

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2007
Haydn M. Prosser
Abstract New neurons are added on a daily basis to the olfactory bulb (OB) of a mammal, and this phenomenon exists throughout its lifetime. These new cells are born in the subventricular zone and migrate to the OB via the rostral migratory stream (RMS). To examine the role of the prokineticin receptor 2 (Prokr2) in neurogenesis, we created a Prokr2 null mouse, and report a decrease in the volume of its OB and also a decrease in the number of bromodeoxyuridine (BrdU)-positive cells. There is disrupted architecture of the OB, with the glomerular layer containing terminal dUTP nick-end labeling (TUNEL) -positive nuclei and also a decrease in tyrosine hydroxylase-positive neurons in this layer. In addition, there are increased numbers of doublecortin-positive neuroblasts in the RMS and increased PSA-NCAM (polysialylated form of the neural cell adhesion molecule) -positive neuronal progenitors around the olfactory ventricle, indicating their detachment from homotypic chains is compromised. Finally, in support of this, Prokr2-deficient cells expanded in vitro as neurospheres are incapable of migrating towards a source of recombinant human prokineticin 2 (PROK2). Together, these findings suggest an important role for Prokr2 in OB neurogenesis. [source]


Synapse-specific localization of vesicular glutamate transporters in the rat olfactory bulb

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2007
Marie-Madeleine Gabellec
Abstract Vesicular glutamate transporters (VGLUTs) mediate the packaging of the excitatory neurotransmitter glutamate into synaptic vesicles. Three VGLUT subtypes have so far been identified, with distinct expression patterns in the adult brain. Here, we investigated the spatial distribution of the three VGLUTs in the rat olfactory bulb, a brain region containing a variety of glutamate synapses, both axodendritic and dendrodendritic. Using multilabelling confocal microscopy and electron microscopic immunocytochemistry, we showed that each VGLUT isoform has a highly selective localization in olfactory bulb synapses. VGLUT1 is present at dendrodendritic synapses established by the output neurones (mitral and tufted cells) with bulbar interneurones in the glomerular layer and external plexiform layer, as well as in axonal synapses of the granule cell layer. By contrast, VGLUT2 is strongly expressed in axon terminals of olfactory sensory neurones, which establish synapses with second-order neurones in the glomerular neuropil. VGLUT2 is also found in the outer part of the external plexiform layer and in the granule cell layer but colocalizes only partially with VGLUT1. Finally, we showed that VGLUT3 is exclusively located in the glomerular neuropil, where it colocalizes extensively with the vesicular inhibitory amino acid transporter vesicular GABA transporter, suggesting that it is associated with a subset of inhibitory synapses. Together, these observations extend previous findings on VGLUT distribution in the forebrain, and suggest that each VGLUT subtype has a specific function in the distinct features of axodendritic and dendrodendritic synapses that characterize the olfactory bulb circuit. [source]


Cell type-dependent expression of HCN1 in the main olfactory bulb

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2003
Noémi B. Holderith
Abstract In many brain regions, hyperpolarization-activated cationic currents (Ih) are involved in the generation of rhythmic activities, but the role of Ih in olfactory oscillations remains unclear. Knowledge of the cellular and subcellular distributions of hyperpolarization-activated and cyclic nucleotide-gated channel (HCN) subunits is necessary for understanding the role of Ih in olfactory network activities. Using light microscopic immunocytochemistry, we demonstrate strong HCN1 labelling of the glomerular layer and moderate staining of granule cell, internal and external plexiform layers of the rat main olfactory bulb. In the glomerular layer, among many unlabelled neurons, two distinct subpopulations of juxtaglomerular cells are labelled. Approximately 10% of the juxtaglomerular cells strongly express HCN1. These small diameter cells are immunoreactive for GABA and comprise a subpopulation of periglomerular cells. An additional subset of juxtaglomerular cells (, 1%) expresses low levels of HCN1. They are large in diameter, GABA immunonegative but immunopositive for vesicular glutamate transporter 2, characterizing them as external tufted cells. Quantitative immunogold localization revealed that the somatic plasma membranes of periglomerular cells contain approximately four times more HCN1 labelling than those of external tufted cells. Unlike in cortical pyramidal cells, immunogold density for HCN1 does not significantly differ in somatic and dendritic plasma membranes of external tufted cells, indicating that post-synaptic potentials arriving at proximal and distal dendrites are modulated by the same density of Ih. Our results demonstrate a cell type-dependent expression of HCN1 in the olfactory bulb and predict a differential contribution of distinct juxtaglomerular cell types to network oscillations. [source]


Dehydroepiandrosterone regulates astroglia reaction to denervation of olfactory glomeruli

GLIA, Issue 3 2004
Zsófia Hoyk
Abstract Effects of dehydroepiandrosterone (DHEA) on glial reactions of the peripherally denervated olfactory bulb were studied in adult male rats. Denervation was achieved by destroying the olfactory mucosa with ZnSO4 (0.17 M) irrigation of the nasal cavities. In one series of experiments, chronic DHEA treatment was applied (daily injections for 7 days, i.p., 10 mg/kg b.w. and 25 mg/kg b.w.); in the other series of experiments, animals received a single injection of DHEA (i.p., 10 mg/kg b.w., 25 mg/kg b.w. and 50 mg/kg b.w.) 2 h following ZnSO4 treatment. To determine whether DHEA conversion to estradiol was involved in the mechanism of DHEA action on glia, a third series of experiments was carried out in which the aromatase inhibitor fadrozole (4.16 mg/ml) was administered using subcutaneously implanted osmotic minipumps. Rats were killed on day 7 after chemical denervation, and the reaction of glial cells was monitored within the olfactory bulb, using GFAP and vimentin immunohistochemistry. Qualitative changes in GFAP expression were analyzed by Western blot. Chronic DHEA treatment with both doses (10 mg/kg b.w. and 25 mg/kg b.w.) and acute DHEA treatment with the highest dose applied (50 mg/kg b.w.), inhibited the increase in GFAP expression induced by the denervation of the olfactory bulb. Furthermore, GFAP and vimentin immunostaining in the glomerular layer of the olfactory bulb were diminished in the denervated and DHEA treated groups. However, when DHEA treatment was combined with fadrozole administration, such a decrease in GFAP expression could not be detected in the chemically denervated olfactory bulb. These findings indicate that DHEA, depending on the dose applied and the mode of administration, attenuates glial reaction to denervation and may regulate glial plasticity in the olfactory glomeruli. These effects are likely to be mediated at least in part by the conversion of DHEA to estradiol. © 2004 Wiley-Liss, Inc. [source]


The Immunohistochemical Characterization of Human Fetal Olfactory Bulb and Olfactory Ensheathing Cells in Culture as a Source for Clinical CNS Restoration

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 3 2010
Kai Liu
Abstract Clinical studies have expanded the therapeutic olfactory ensheathing cells (OECs) transplantation to different human Central Nervous System (CNS) diseases. In fact, the OEC transplantation in clinic is a mixture of olfactory bulb cells; they even have not demonstrated that they have such a subpopulation yet. However, as a source of OECs transplantation, the development and identification of human fetal OECs are still need more understanding, because some surgery try to restoration CNS injury with a more purity of OEC cultures generated by a number of different procedures. In this article, twelve human fetal olfactory bulb (OB) samples were obtained from six fetuses in 20 weeks of gestation, it was studied by immunofluorescence on histological sections and cultured cells with multiple antibodies under confocal microscopy. The P75NTR positive OB-OECs (olfactory ensheathing cell from the olfactory bulb) were present in both outer olfactory nerve layers and glomerular layer. The percentage of OB cells in culture, about 22.31 was P75NTR positive, 45.77 was S100,, and 31.92 was GFAP. P75NTR and GFAP were coexpressed with S100,, respectively; however, P75NTR was not coexpressed with GFAP in human fetal OECs. It is suggested that the localization and development of human OECs in OB are different to those in rodent, and the P75NTR immunohistological staining is still necessary to identify and characterize human fetal OECs in culture before transplantation. Anat Rec, 2010. © 2009 Wiley-Liss, Inc. [source]


Prolonged stimulus exposure reveals prolonged neurobehavioral response patterns

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 10 2010
Brett A. Johnson
Abstract Although it has been shown repeatedly that minimum response times in sensory systems can be quite short, organisms more often continue to respond to sensory stimuli over considerably longer periods of time. The continuing response to sensory stimulation may be a more realistic assessment of natural sensory responses, so we determined for how long a stimulus would evoke a response in naïve, freely moving animals. Specifically, we determined for how long such rats responded to odorants during continuous passive exposures by monitoring their sniffing with whole-body plethysmography. We found that naïve rats continue to sniff odorants vigorously for up to 3 minutes, much longer than what has been reported for highly trained, highly motivated rats. Patterns of 2-deoxyglucose (2-DG) uptake in the glomerular layer of the rat olfactory bulb also were seen after only 1,5 minutes of odorant exposure, overlapping with the period of increased respiration to odorants. Moreover, these 2-DG uptake patterns closely resembled the patterns that emerge from prolonged odorant exposures, suggesting that activity mapping over prolonged periods can identify areas of activity that are present when rats are still attending and responding to odorant stimuli. Given these findings, it seems important to consider the possibility that prolonged exposure to other sensory stimuli will reveal more realistic neural response patterns. J. Comp. Neurol. 518:1617,1629, 2010. © 2009 Wiley-Liss, Inc. [source]


Expression of PTPRO in the interneurons of adult mouse olfactory bulb

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 2 2010
Takenori Kotani
PTPRO is a receptor-type protein tyrosine phosphatase (PTP) with a single catalytic domain in its cytoplasmic region and multiple fibronectin type III-like domains in its extracellular region. In the chick, PTPRO mRNA has been shown to be particularly abundant in embryonic brain, and PTPRO is implicated in axon growth and guidance during embryonic development. However, the temporal and spatial expression of PTPRO protein in the mammalian CNS, particularly in the juvenile and adult mammalian brain, has not been evaluated in any detail. By immunohistofluorescence analysis with a monoclonal antibody to PTPRO, we show that PTPRO is widely expressed throughout the mouse brain from embryonic day 16 to postnatal day 1, while expression is largely confined to the olfactory bulb (OB) and olfactory tubercle in the adult brain. In the OB, PTPRO protein is expressed predominantly in the external plexiform layer, the granule cell layer, and the glomerular layer (GL). In these regions, expression of PTPRO is predominant in interneurons such as ,-aminobutyric acid (GABA)-ergic or calretinin (CR)-positive granule cells. In addition, PTPRO is expressed in GABAergic, CR-positive, tyrosine hydroxylase-positive, or neurocalcin-positive periglomerular cells in the GL. Costaining of PTPRO with other neuronal markers suggests that PTPRO is likely to be localized to the dendrites or dendritic spines of these olfactory interneurons. Thus, PTPRO might participate in regulation of dendritic morphology or synapse formation of interneurons in the adult mouse OB. J. Comp. Neurol. 518:119,136, 2010. © 2009 Wiley-Liss, Inc. [source]


Expression of PTPRO in the interneurons of adult mouse olfactory bulb

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 2 2010
Takenori Kotani
Abstract PTPRO is a receptor-type protein tyrosine phosphatase (PTP) with a single catalytic domain in its cytoplasmic region and multiple fibronectin type III-like domains in its extracellular region. In the chick, PTPRO mRNA has been shown to be particularly abundant in embryonic brain, and PTPRO is implicated in axon growth and guidance during embryonic development. However, the temporal and spatial expression of PTPRO protein in the mammalian CNS, particularly in the juvenile and adult mammalian brain, has not been evaluated in any detail. By immunohistofluorescence analysis with a monoclonal antibody to PTPRO, we show that PTPRO is widely expressed throughout the mouse brain from embryonic day 16 to postnatal day 1, while expression is largely confined to the olfactory bulb (OB) and olfactory tubercle in the adult brain. In the OB, PTPRO protein is expressed predominantly in the external plexiform layer, the granule cell layer, and the glomerular layer (GL). In these regions, expression of PTPRO is predominant in interneurons such as ,-aminobutyric acid (GABA)-ergic or calretinin (CR)-positive granule cells. In addition, PTPRO is expressed in GABAergic, CR-positive, tyrosine hydroxylase-positive, or neurocalcin-positive periglomerular cells in the GL. Costaining of PTPRO with other neuronal markers suggests that PTPRO is likely to be localized to the dendrites or dendritic spines of these olfactory interneurons. Thus, PTPRO might participate in regulation of dendritic morphology or synapse formation of interneurons in the adult mouse OB. J. Comp. Neurol. 518:119,136, 2010. © 2009 Wiley-Liss, Inc. [source]


Quantitative analysis of neuronal diversity in the mouse olfactory bulb

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 6 2007
S. Parrish-Aungst
Abstract Olfactory sensory information is processed and integrated by circuits within the olfactory bulb. Golgi morphology suggests the olfactory bulb contains several major neuronal classes. However, an increasingly diverse collection of neurochemical markers have been localized in subpopulations of olfactory bulb neurons. While the mouse is becoming the animal model of choice for olfactory research, little is known about the proportions of neurons expressing and coexpressing different neurochemical markers in this species. Here we characterize neuronal populations in the mouse main olfactory bulb, focusing on glomerular populations. Immunofluorescent labeling for: 1) calretinin, 2) calbindin D-28K (CB), 3) parvalbumin, 4) neurocalcin, 5) tyrosine hydroxylase (TH), 6) the 67-kDa isoform of GAD (GAD67), and 7) the neuronal marker NeuN was performed in mice expressing green fluorescent protein under the control of the glutamic acid decarboxylase 65kDa (GAD65) promoter. Using unbiased stereological cell counts we estimated the total numbers of cells and neurons in the bulb and the number and percentage of neurons expressing and coexpressing different neurochemical populations in each layer of the olfactory bulb. Use of a genetic label for GAD65 and immunohistochemistry for GAD67 identified a much larger percentage of GABAergic neurons in the glomerular layer (55% of all neurons) than previously recognized. Additionally, while many glomerular neurons expressing TH or CB coexpress GAD, the majority of these neurons preferentially express the GAD67 isoform. These data suggest that the chemospecific populations of neurons in glomeruli form distinct subpopulations and that GAD isoforms are preferentially regulated in different neurochemical cell types. J. Comp. Neurol. 501:825,836, 2007. © 2007 Wiley-Liss, Inc. [source]


Differential responses to branched and unsaturated aliphatic hydrocarbons in the rat olfactory system

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 4 2006
Sabrina L. Ho
Abstract In an effort to understand mammalian olfactory processing, we have been describing the responses to systematically different odorants in the glomerular layer of the main olfactory bulb of rats. Previously, we demonstrated chemotopically organized and distinct olfactory responses to a homologous series of straight-chained alkanes that consisted of purely hydrocarbon structures, indicating that hydrocarbon chains could serve as molecular features in the combinatorial coding of odorant information. To better understand the processing of hydrocarbon odorants, we now have examined responses to other types of chemical changes in these kinds of molecules, namely, branching and carbon,carbon bond saturation. To this end, we used the [14C]2-deoxyglucose method to determine glomerular responses to a group of eight-carbon branched alkane isomers, unsaturated octenes (double-bonded), and octynes (triple-bonded). In contrast to the differential responses we observed previously for straight-chained alkanes of differing carbon number, the rat olfactory system was not particularly sensitive to these variations in branching and bond saturation. This result was unexpected, given the distinct molecular conformations and property profiles of the odorants. The similarity in activity patterns was paralleled by a similarity in spontaneous perceptual responses measured using a habituation assay. These results demonstrate again the functional relationship between bulbar activity patterns and odor perception. The results further suggest that the olfactory system does not respond equally to all aspects of odorant chemistry, functioning as a specific, rather than a general, chemical analysis system. J. Comp. Neurol. 499:519,532, 2006. © 2006 Wiley-Liss, Inc. [source]


Organization of the main olfactory bulbs of some mammals: Musk shrews, moles, hedgehogs, tree shrews, bats, mice, and rats

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 1 2004
Katsuko Kosaka
Abstract We immunohistochemically examined the organization of the main olfactory bulbs (MOBs) in seven mammalian species, including moles, hedgehogs, tree shrews, bats, and mice as well as laboratory musk shrews and rats. We focused our investigation on two points: 1) whether nidi, particular spheroidal synaptic regions subjacent to glomeruli, which we previously reported for the laboratory musk shrew MOBs, are also present in other animals and 2) whether the compartmental organization of glomeruli and two types of periglomerular cells we proposed for the rat MOBs are general in other animals. The general laminar pattern was similar among these seven species, but discrete nidi and the nidal layer were recognized only in two insectivores, namely, the mole and laboratory musk shrew. Olfactory marker protein-immunoreactive (OMP-IR) axons extended beyond the limits of the glomerular layer (GL) into the superficial region of the external plexiform layer (EPL) or the nidal layer in the laboratory musk shrew, mole, hedgehog, and tree shrew but not in bat, mouse, and rat. We observed, in nidi and the nidal layer in the mole and laboratory musk shrew MOBs, only a few OMP-IR axons. In the hedgehog, another insectivore, OMP-IR processes extending from the glomeruli were scattered and intermingled with calbindin D28k-IR cells at the border between the GL and the EPL. In the superficial region of the EPL of the tree shrew MOBs, there were a small number of tiny glomerulus-like spheroidal structures where OMP-IR axons protruding from glomeruli were intermingled with dendritic branches of surrounding calbindin D28k-IR cells. Furthermore, we recognized the compartmental organization of glomeruli and two types of periglomerular cells in the MOBs of all of the mammals we examined. These structural features are therefore considered to be common and important organizational principles of the MOBs. J. Comp. Neurol. 472:1,12, 2004. © 2004 Wiley-Liss, Inc. [source]


Lectin Histochemical Analysis of the Olfactory Bulbs in the Barfin Flounder (Verasper moseri)

ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 1 2010
N. Nakamuta
Summary Several lines of evidence have shown that the olfactory system of the fish contains the main and accessory olfactory systems. However, morphological data indicate that the accessory olfactory bulb, the primary centre for the accessory olfactory system, will not differentiate in the fish. Therefore, the fish olfactory bulb is supposed to engage in both main and accessory olfactory systems. To examine this possibility, we investigated the olfactory bulb of the barfin flounder (Verasper moseri) by histochemical examination using lectins. The olfactory bulb of the barfin flounder showed a laminar structure with four layers, and diffuse glomerular architecture was observed in the glomerular layer. Based on the expression patterns of sugar residues, the glomerular layer of the barfin olfactory bulb was largely divided into three portions. Heterogeneity in the lectin-binding pattern among olfactory glomeruli was clearly demonstrated by the fluorescent double-lectin staining. The results of this study suggest that the fish olfactory bulb contains both regions equivalent to the main and accessory olfactory bulbs, and they are subdivided into small subsets with different functions. [source]


Changes in adult olfactory bulb neurogenesis in mice expressing the A30P mutant form of alpha-synuclein

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2009
Franz Marxreiter
Abstract In familial and sporadic forms of Parkinson's disease (PD), alpha-synuclein pathology is present in the brain stem nuclei and olfactory bulb (OB) long before Lewy bodies are detected in the substantia nigra. The OB is an active region of adult neurogenesis, where newly generated neurons physiologically integrate. While accumulation of wild-type alpha-synuclein is one of the pathogenic hallmarks of non-genetic forms of PD, the A30P alpha-synuclein mutation results in an earlier disease onset and a severe clinical phenotype. Here, we study the regulation of adult neurogenesis in the subventricular zone (SVZ)/OB system in a tetracycline-suppressive (tet-off) transgenic model of synucleinopathies, expressing human mutant A30P alpha-synuclein under the control of the calcium/calmodulin-dependent protein kinase II alpha (CaMK) promoter. In A30P transgenic mice alpha-synuclein was abundant at the site of integration in the glomerular cell layer of the OB. Without changes in proliferation in the SVZ, significantly fewer newly generated neurons were observed in the OB granule cell and glomerular layers of A30P transgenic mice than in controls, most probably due to increased cell death. By tetracycline-dependent abrogation of A30P alpha-synuclein expression, OB neurogenesis and programmed cell death was restored to control levels. Our results indicate that, using A30P conditional (tet-off) mice, A30P alpha-synuclein has a negative impact on olfactory neurogenesis and suppression of A30P alpha-synuclein enhances survival of newly generated neurons. This finding suggests that interfering with alpha-synuclein pathology can rescue newly generated neurons, possibly leading to new targets for therapeutic interventions in synucleinopathies. [source]


Mapping at glomerular resolution: fMRI of rat olfactory bulb

MAGNETIC RESONANCE IN MEDICINE, Issue 3 2002
Ikuhiro Kida
Abstract The rat olfactory bulb contains ,2000 functional units called glomeruli which are used to recognize specific characteristics of odorants. Activity localization of individual glomerulae (,0.002 ,L) has important consequences for understanding mechanisms in olfactory information encoding. High-resolution functional MRI (fMRI) data from the rat olfactory bulb are presented using the blood oxygenation level dependent (BOLD) method at 7 T. Either individual or clusters of fMRI voxels suggestive of activity in the olfactory nerve and glomerular layers were reproducibly detected with repeated 2-min exposures of iso-amyl acetate at spatial resolution of 0.001,0.003 ,L. The importance of glomerular clustering for olfaction and the implications of BOLD mapping with even higher spatial resolution (i.e., ,0.001 ,L voxels) are discussed. High-resolution in vivo mapping of the rat olfactory bulb with fMRI at high magnetic field promises to provide novel data for understanding olfaction. Magn Reson Med 48:570,576, 2002. © 2002 Wiley-Liss, Inc. [source]