Home About us Contact | |||
Glomerular Basement Membrane (glomerular + basement_membrane)
Selected AbstractsEffects of aminoguanidine and tolrestat on the development of ocular and renal structural changes in experimental diabetic ratsDIABETES OBESITY & METABOLISM, Issue 1 2002Ö. Azal Studies that researched the role of aminoguanidine and tolestat in the prevention of diabetic retinopathy and nephropathy resulted in conflicting data. We investigated the effects of these agents in the prevention of ocular and renal changes in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced by intravenous injection of STZ in 30 rats. Ten rats that were not given STZ served as non-diabetic control (Group 1). Ten STZ-diabetic rats that were not given any treatment served as diabetic control (Group 2). Groups 3 and 4 were composed of STZ-induced diabetic rats (10 each) that were given tolrestat and aminoguanidine respectively. Eyes and kidneys were examined at the 24th week under electronmicroscopy. Cataract was observed in all six of the surviving rats in Groups 2 and 4, and in one of 6 surviving rats in group 3. Cataract development was lower in Group 3 than Groups 2 and 4. All retinal samples obtained from group 2 demonstrated a number of structural abnormalities, whereas there were no significant ultrastructural changes in groups 3 and 4. Groups 2 and 3 demonstrated mesangial proliferation and expansion, diffuse glomerular basement membrane (GBM) thickening, and focal GBM thickening in the bulb form. Group 4 demonstrated a normally appearing mesangial space, minimal diffuse but no focal GBM thickening. The urinary albumin excretion (UAE) was lower in Group 4 than the other groups. In conclusion, our results suggest that aminoguanidine may be an important agent for the prevention of renal changes, whereas tolrestat may be effective for the prevention of ocular changes in diabetes mellitus. [source] Heparan sulfate proteoglycans in experimental models of diabetes: a role for perlecan in diabetes complicationsDIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 6 2001Karin Conde-Knape Abstract Proteoglycans are ubiquitous extracellular proteins that serve a variety of functions throughout the organism. Unlike other glycoproteins, proteoglycans are classified based on the structure of the glycosaminoglycan carbohydrate chains, not the core proteins. Perlecan, a member of the heparan sulfate proteoglycan (HSPG) family, has been implicated in many complications of diabetes. Decreased levels of perlecan have been observed in the kidney and in other organs, both in patients with diabetes and in animal models. Perlecan has an important role in the maintenance of the glomerular filtration barrier. Decreased perlecan in the glomerular basement membrane has a central role in the development of diabetic albuminuria. The involvement of this proteoglycan in diabetic complications and the possible mechanisms underlying such a role have been addressed using a variety of models. Due to the importance of nephropathy among diabetic patients most of the studies conducted so far relate to diabetes effects on perlecan in different types of kidney cells. The various diabetic models used have provided information on some of the mechanisms underlying perlecan's role in diabetes as well as on possible factors affecting its regulation. However, many other aspects of perlecan metabolism still await full elucidation. The present review provides a description of the models that have been used to study HSPG and in particular perlecan metabolism in diabetes and some of the factors that have been found to be important in the regulation of perlecan. Copyright © 2001 John Wiley & Sons, Ltd. [source] A novel ultra-sensitive method for the quantification of glycosaminoglycan disaccharides using an automated DNA sequencerELECTROPHORESIS, Issue 7 2006Kay Vogel Abstract Analysis of glycosaminoglycans (GAGs) is of increasing importance concerning alterations in extracellular matrix composition and selectivity of glomerular basement membrane. In this report we describe the analysis of chondroitin sulfate disaccharides as an example of GAG ,disaccharide analysis using standard DNA sequencing equipment (DNA sequencer-assisted GAG disaccharide separation, DSA-GAGS). The presented methodology allows nanomolar quantification of 8-aminopyrene-1,3,6-trisulfonic acid (APTS)-derived GAG disaccharides. In comparison to RP-HPLC the established method is much more sensitive, showing detection limits of 38,fmol/,L. Variation coefficients were approximately 10%, enabling exact quantifications after run times of 17,min at 30°C and an electrophoresis voltage of 15,kV; using a capillary DNA sequencer, available in many molecular laboratories, presented advantages like automated sample injection, opportunity of high-throughput analyses, separation of even sulfated disaccharide epimers, and the possibility of using APTS-derived fucose as an internal standard. Furthermore, highly reproducible retention times rendered easy identification of specific signals (SD,0.02). With regard to these results, the described method is a useful tool for the quantification of GAG disaccharides in low amounts, indicating advantages of obverse RP-HPLC and slab gel polyacrylamide electrophoresis in sensitivity, error-proneness, automation, and handling. [source] An immune-complex glomerulonephritis of Chinook salmon, Oncorhynchus tshawytscha (Walbaum)JOURNAL OF FISH DISEASES, Issue 12 2008J S Lumsden Abstract Chinook salmon from New Zealand were shown to have a generalized membranous glomerulonephritis that was most severe in large fish. Marked thickening of the glomerular basement membrane was the most consistent lesion, with the presence of an electron-dense deposit beneath the capillary endothelium. Severely affected glomeruli also had expansion of the mesangium and loss of capillaries, synechiae of the visceral and parietal epithelium and mild fibrosis of Bowman's capsule. Chinook salmon from British Columbia, Canada with bacterial kidney disease caused by Renibacterium salmoninarum had similar histological lesions. They also had thickened glomerular basement membranes that were recognized by rabbit antiserum to rainbow trout immunoglobulin. This was true only when frozen sections of kidney were used and not formalin-fixed tissue. An attempt to experimentally produce a glomerulopathy in rainbow trout by repeated immunization with killed R. salmoninarum was not successful. Case records from the Fish Pathology Laboratory at the University of Guelph over a 10-year period revealed that a range of species were diagnosed with glomerulopathies similar to those seen in Chinook salmon. The majority of these cases were determined to have chronic inflammatory disease. This report has identified the presence of immunoglobulin within thickened basement membranes of Chinook salmon with glomerulonephritis and supports the existence of type III hypersensitivity in fish. [source] Causes and consequences of proteinuria: the kidney filtration barrier and progressive renal failureJOURNAL OF INTERNAL MEDICINE, Issue 3 2003K. Tryggvason Abstract., Tryggvason K, Pettersson E (Karolinska Institute, Stockholm, Sweden). Causes and consequences of proteinuria: the kidney filtration barrier and progressive renal failure (Review). J Intern Med 2003; 254: 216,224. The past few years have witnessed a major breakthrough in the understanding of the molecular mechanisms and ultrastructural changes behind the development of proteinuria. The discovery of several proteins in the glomerular podocyte and slit diaphragm, where mutations lead to disease, has revealed the importance of this cell with its diaphragm as the major filtration barrier as opposed to the glomerular basement membrane (GBM) previously ascribed this function. Furthermore, accumulating clinical as well as experimental evidence points to the harmful effects of proteinuria, irrespective of the original damage. The purpose of this review is to shed light on what we know today about the two sides of this ,coin', the causes and the consequences of proteinuria. [source] Development and fate of crescentic and granulomatous lesions in rat Masugi nephritisPATHOLOGY INTERNATIONAL, Issue 2 2001Tetsuro Horio It has been observed that with Masugi nephritis in Wistar rats the initiation of endocapillary proliferative changes with macrophage accumulation is usually followed by glomerular sclerosis without extracapillary extension. In the present study, the provocation of an extracapillary lesion was attempted using accelerated Masugi nephritis in Wistar,Kyoto rats. In order to accelerate the accumulation of monocyte/macrophages, the administration of methylcellulose was added in an additional group. The development and fate of extracapillary lesions were analyzed histopathologically and immunohistochemically. As a result, the formation of extracapillary proliferation of granulomatous lesions could be initiated in this model. Granulomatous lesions were composed of CD4+ T cells and CD8+ T cells and monocyte/macrophages including multinucleated giant cells. These inflammatory cells had seemingly escaped from the capillary lumen through the injured glomerular basement membrane and formed cellular and granulomatous crescents. In addition, tenascin was strongly expressed in cellular crescents and was a unique extracellular matrix at this cellular stage. The cellular crescents then progressed to sclerosis with the formation of increased collagenous extracellular matrix. These results suggest that a delayed-type hypersensitivity plays a role in granulomatous crescent formation, even though the initial glomerular injury was evoked by a humoral antibody. [source] Lessons from studies on focal segmental glomerulosclerosis: an important role for parietal epithelial cells?THE JOURNAL OF PATHOLOGY, Issue 3 2006B Smeets Abstract Glomerular diseases are caused by multiple mechanisms. Progressive glomerular injury is characterized by the development of segmental or global glomerulosclerosis independent of the nature of the underlying renal disease. Most studies on glomerular disease focus on the constituents of the filtration barrier (podocytes, glomerular basement membrane (GBM), endothelial cells) or the mesangial cells. Little attention is given to the epithelial cells lining Bowman's capsule, the so called parietal epithelial cells (PECs). This ,lack of attention' is partly explained by the presumed ,passive' function of PECs, which are large, flattened cells that cover Bowman's capsule in a single cell layer and form a barrier between the ultrafiltrate and the periglomerular interstitium, in normal glomerular physiology. A more important reason has been the lack of an established primary role for the parietal epithelium in glomerular diseases. However, in recent years, several studies have demonstrated that PECs are involved in extracapillary proliferation. In addition, PECs can become highly active, proliferating cells, expressing many growth factors, chemokines, cytokines, and their receptors. It was recently demonstrated that PECs also play a part in the development of focal segmental glomerulosclerosis (FSGS). This review summarises current knowledge of the PEC, with emphasis on the role of PECs in the development of FSGS. Copyright © 2006 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source] Increase of Integrin-Linked Kinase Activity in Cultured Podocytes upon Stimulation with Plasma from Patients with Recurrent FSGSAMERICAN JOURNAL OF TRANSPLANTATION, Issue 7 2008M. Hattori Recurrent focal segmental glomerulosclerosis (FSGS) is a major challenge in the field of transplantation. Integrin-linked kinase (ILK) has emerged as a key mediator of podocyte,glomerular basement membrane (GBM) interactions. To clarify the involvement of plasma factors in FSGS recurrence, we examined the effects of plasma from FSGS patients with or without posttransplant recurrence on cultured podocytes, focusing particularly on ILK activity. Podocytes from a conditionally immortalized mouse podocyte cell line were treated with plasma from 11 FSGS patients, and ILK activity was determined using an immune complex kinase assay. Treatment with plasma from three patients with recurrence induced an increase in ILK activity. In contrast, no increase in ILK activity was observed in cultured podocytes treated with plasma from the remaining three patients with recurrence and five patients without recurrence. Cultured podocytes treated with plasma that induced ILK activity showed alterations of focal contact and detachment from the laminin matrix. In conclusion, this preliminary study provides experimental evidence suggesting the possible presence of circulating toxic factors in the plasma of some patients with recurrent FSGS, which induce an increase in podocyte ILK activity that may lead to the detachment of podocytes from the GBM. [source] Renal pathology of polycystic kidney disease and concurrent hereditary nephritis in Bull TerriersAUSTRALIAN VETERINARY JOURNAL, Issue 6 2002CA O'LEARY Objective To describe the renal lesions in Bull Terrier poly-cystic kidney disease (BTPKD), to confirm that the renal cysts in BTPKD arise from the nephron or collecting tubule, and to identify lesions consistent with concurrent BTPKD and Bull Terrier hereditary nephritis (BTHN). Design Renal tissue from five Bull Terriers with BTPKD and eight control dogs was examined by light and transmission electron microscopy. Clinical data were collected from all dogs, and family history of BTPKD and BTHN for all Bull Terriers. Results In BTPKD the renal cysts were lined by epithelial cells of nephron or collecting duct origin that were usually squamous or cuboidal, with few organelles. They had normal junctional complexes, and basal laminae of varying thicknesses. Glomeruli with small, atrophic tufts and dilated Bowman's capsules, tubular loss and dilation, and interstitial inflammation and fibrosis were common. Whereas the lesions seen in BTHN by light microscope were nonspecific, the presence of characteristic ultrastructural glomerular basement membrane (GMB) lesions and a family history of this disease indicated concurrent BTHN was likely in three of five cases of BTPKD. Conclusion This paper provides evidence that renal cysts in BTPKD are of nephron or collecting duct origin. In addition, GBM lesions are described that strongly suggest that BTPKD and BTHN may occur simultaneously. [source] Living related kidney transplantation in a patient with autosomal-recessive Alport syndromeCLINICAL TRANSPLANTATION, Issue 2003Ken Sakai Abstract:, We discuss a patient with Alport syndrome who received a renal transplant from a donor with thin basement membrane disease. A 30-year-old woman, diagnosed with Alport syndrome on the basis of sensorineural hearing loss, characteristic renal biopsy findings and a family history of microhaematuria, entered chronic haemodialysis therapy. She then received a renal transplant donated from her father, who had sensorineural hearing loss and persistent microhaematuria. On the day of renal transplantation, a 1-h graft biopsy after reperfusion showed thin basement membrane disease. We re-tested the patient's native kidney biopsy specimen by immunohistochemical staining using ,-chain-specific collagen type IV monoclonal antibodies. There was no expression of collagen type IV ,3-, ,4- and ,5-chain on glomerular basement membrane, but positive staining of ,5-chain on Bowman's capsular basement membrane was noted. A diagnosis of autosomal-recessive Alport syndrome was made. We concluded that this family might display different phenotypic expressions of the same genotype: one suffered end-stage renal disease and the other thin basement membrane disease. [source] Deposition of chromatin-IgG complexes in skin of nephritic MRL-lpr/lpr mice is associated with increased local matrix metalloprotease activitiesEXPERIMENTAL DERMATOLOGY, Issue 8 2010Annica Hedberg Please cite this paper as: Deposition of chromatin-IgG complexes in skin of nephritic MRL-lpr/lpr mice is associated with increased local matrix metalloprotease activities. Experimental Dermatology 2010; 19: e265,e274. Abstract:, Chromatin-IgG complexes appear as electron dense structures (EDS) in glomerular basement membranes in lupus nephritis. Here, we present results of comparative analyses of the composition of EDS in murine lupus dermatitis and nephritis. One focus was to perform an analytical approach to understand why such complex structures bind skin basement membrane components. Transcription of skin membrane-encoding genes was analysed to see if expression of such genes was increased, eventually indicating that binding capacity of immune complexes increased when dermatitis developed. Variations in matrix metalloprotease 2 (MMP2), MMP9 and Dnase1 mRNA levels and enzymatic activities were correlated with circulatory chromatin-IgG complexes and deposition in skin. We also examined if glomerular deposits of EDS predicted similar deposits in skin of (NZB × NZW)F1 or MRL-lpr/lpr mice, as we observed chromatin-IgG complexes in capillary lumina in skin and glomeruli in both strains. EDS consisting of chromatin fragments and IgG were found sub-epidermally in skin with LE-like lesions of end-stage nephritic MRL-lpr/lpr mice. Dermal MMP-encoding genes were up-regulated during disease progression, and gelatinolytic activity was increased in affected skin. Dnase1 mRNA level and total nuclease activity remained stable in skin during the disease, in contrast to progressive loss of renal Dnase1 mRNA and total renal nuclease activity during development of nephritis. Loss of renal Dnase1 may explain release of chromatin fragments, while increased MMP activity may disrupt membranes making them accessible for chromatin fragment-IgG complexes. Circulatory chromatin-IgG complexes, and up-regulated intradermal MMP activity may be crucial for deposition of immune complexes in skin of lupus-prone mice. [source] An immune-complex glomerulonephritis of Chinook salmon, Oncorhynchus tshawytscha (Walbaum)JOURNAL OF FISH DISEASES, Issue 12 2008J S Lumsden Abstract Chinook salmon from New Zealand were shown to have a generalized membranous glomerulonephritis that was most severe in large fish. Marked thickening of the glomerular basement membrane was the most consistent lesion, with the presence of an electron-dense deposit beneath the capillary endothelium. Severely affected glomeruli also had expansion of the mesangium and loss of capillaries, synechiae of the visceral and parietal epithelium and mild fibrosis of Bowman's capsule. Chinook salmon from British Columbia, Canada with bacterial kidney disease caused by Renibacterium salmoninarum had similar histological lesions. They also had thickened glomerular basement membranes that were recognized by rabbit antiserum to rainbow trout immunoglobulin. This was true only when frozen sections of kidney were used and not formalin-fixed tissue. An attempt to experimentally produce a glomerulopathy in rainbow trout by repeated immunization with killed R. salmoninarum was not successful. Case records from the Fish Pathology Laboratory at the University of Guelph over a 10-year period revealed that a range of species were diagnosed with glomerulopathies similar to those seen in Chinook salmon. The majority of these cases were determined to have chronic inflammatory disease. This report has identified the presence of immunoglobulin within thickened basement membranes of Chinook salmon with glomerulonephritis and supports the existence of type III hypersensitivity in fish. [source] |