Home About us Contact | |||
Glioma Invasion (glioma + invasion)
Selected AbstractsCooperative expression of junctional adhesion molecule-C and -B supports growth and invasion of gliomaGLIA, Issue 5 2010Mirna Tenan Abstract Brain invasion is a biological hallmark of glioma that contributes to its aggressiveness and limits the potential of surgery and irradiation. Deregulated expression of adhesion molecules on glioma cells is thought to contribute to this process. Junctional adhesion molecules (JAMs) include several IgSF members involved in leukocyte trafficking, angiogenesis, and cell polarity. They are expressed mainly by endothelial cells, white blood cells, and platelets. Here, we report JAM-C expression by human gliomas, but not by their normal cellular counterpart. This expression correlates with the expression of genes involved in cytoskeleton remodeling and cell migration. These genes, identified by a transcriptomic approach, include poliovirus receptor and cystein-rich 61, both known to promote glioma invasion, as well as actin filament associated protein, a c-Src binding partner. Gliomas also aberrantly express JAM-B, a high affinity JAM-C ligand. Their interaction activates the c-Src proto-oncogene, a central upstream molecule in the pathways regulating cell migration and invasion. In the tumor microenvironment, this co-expression may thus promote glioma invasion through paracrine stimuli from both tumor cells and endothelial cells. Accordingly, JAM-C/B blocking antibodies impair in vivo glioma growth and invasion, highlighting the potential of JAM-C and JAM-B as new targets for the treatment of human gliomas. © 2009 Wiley-Liss, Inc. [source] Vesicle amine transport protein-1 (VAT-1) is upregulated in glioblastomas and promotes migrationNEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 4 2009S. Mertsch Aim:,Diffuse invasion of single-glioma cells is the main obstacle to successful therapy of these tumours. After identifying vesicle amine transport protein-1 (VAT-1) as being upregulated in invasive human gliomas, we study its possible function in glioblastoma cell migration. Methods:,Based on data obtained from previous oligonucleotide arrays, we investigated expression of VAT-1 in glioblastoma tissue and cell lines on mRNA levels using reverse transcriptase PCR. Furthermore, we examined the amount and localization of VAT-1 protein using immunoblotting and immunohistochemistry. Using small interfering RNA technology we repressed VAT-1 expression in human glioma cell lines and analysed their migration using wound healing and transwell migration assays. Results:,Increased VAT-1 mRNA and protein levels were found in glioblastoma tissues and cell lines compared with normal human brain. Small interfering RNA-mediated VAT-1 knockdown led to significantly reduced migration of human glioma cells. Conclusions:,VAT-1 is overexpressed in glioblastomas and functionally involved in glioma cell migration, representing a new component involved in glioma invasion. [source] Association between laminin-8 and glial tumor grade, recurrence, and patient survival,CANCER, Issue 3 2004Julia Y. Ljubimova M.D., Ph.D. Abstract BACKGROUND The authors previously sought to identify novel markers of glioma invasion and recurrence. Their research demonstrated that brain gliomas overexpressed a subset of vascular basement components, laminins, that contained the ,4 chain. One of these laminins, laminin-8, was found to be present in highly invasive and malignant glioblastoma multiforme (GBM) (Grade 4 astrocytoma); its expression was associated with a decreased time to tumor recurrence, and it was found in vitro to promote invasion of GBM cell lines. METHODS In the current study, the authors studied glial tumors of different grades in an attempt to correlate laminin-8 expression with tumor recurrence and patient survival. Immunohistochemistry and Western blot analysis were used to detect laminin isoforms of interest. RESULTS Using immunohistochemistry and Western blot analysis, the authors confirmed high levels of laminin-8 expression in approximately 75% of the GBM cases examined and in their adjacent tissues, whereas astrocytomas of lower grades expressed for the most part a different isoform, laminin-9, which also was found in low amounts in normal brain tissue and benign meningiomas. Overexpression of laminin-8 in GBM was found to be associated with a statistically significant shorter time to tumor recurrence (P < 0.0002) and a decreased patient survival time (P < 0.015). CONCLUSIONS The data suggest that laminin-8, which may facilitate tumor invasion, contributes to tumor regrowth after therapy. Laminin-8 may be used as a predictor of tumor recurrence and patient survival and as a potential molecular target for glioma therapy. Cancer 2004. © 2004 American Cancer Society. [source] The value and correlation between PRL-3 expression and matrix metalloproteinase activity and expression in human gliomasNEUROPATHOLOGY, Issue 6 2007Lingfei Kong Local invasion of tumor cells is characteristic of most human glioma invasions. It is associated with increased motility and a potential to degrade the extracellular matrix. Matrix metalloproteinases (MMPs) have been proved to be a main process in local invasion of brain tumor. PRL-3 is a new protein tyrosine phosphatase which would also degrade the extracellular matrix and has been proved to be expressed in liver metastases derived from colorectal cancer. In this study, we sought to investigate the expression of PRL-3 in glioma tissues and investigate the relationship between MMPs (MMP2, MMP9, membrane-type matrix metalloproteinase 1 [MT1-MMP]) activity and expression in gliomas. The modifications of in situ hybridization of mRNA phosphatase of regenerating liver-3 (PRL-3) methods are preformed in the study of paraffin-embedded slides. The immunohistochemistry and gelatin zymography are used to detect the expression of PRL-3 and activity of MMPs. The results show that PRL-3 mRNA and antibody of PRL-3 are detected in glioma tissues mainly in grades IV and III, only a little in grade II, but not in normal brain tissue and glioma grade I. MMP2 and MMP9 are observed mainly in glioma tissues of grades IV and III in activity and expression. MT1-MMP protein is located in glioma tissues and vessel endothelial cells. This is the first report of detecting PRL-3 expression in gliomas, especially in grades III and IV, which may play an important role in progression of gliomas. PRL-3, MMP2 and MT1-MMP cooperatively contribute to gliomas invasion. Intermediate MMP2 (MT1-MMP, TIMP-2, MMP2 trimeric complex) is detected in high grades of glioma tissues by gelatin zymography and may be a marker indicating latent malignance of gliomas. [source] |