Home About us Contact | |||
Glial
Terms modified by Glial Selected AbstractsGlial cells promote dendrite formation and the reception of synaptic input in Purkinje cells from postnatal miceGLIA, Issue 5 2010Isabelle Buard Abstract Previous studies suggest that glial cells contribute to synaptogenesis in specific neurons from the postnatal CNS. Here, we studied whether this is true for Purkinje cells (PCs), which represent a unique neuronal cell type due to their large size, massive synaptic input, and high vulnerability. Using new glia-free cultures enriched in PCs from postnatal mice we show that these neurons survived and grew, but displayed only low levels of excitatory and inhibitory synaptic activity. Coculture with glial cells strongly enhanced the frequency and size of spontaneous and miniature excitatory synaptic currents as well as neurite growth and branching. Immunocytochemical staining for microtubule-associated protein 2- (MAP2-) positive neurites revealed impaired dendrite formation in PCs under glia-free conditions, which can explain the absence of synaptic activity. Glial signals strongly enhanced dendritogenesis in PCs and thus their ability to receive excitatory synaptic input from granule cells (GCs). The enhancement of dendrite formation was mimicked by glia-conditioned medium (GCM), whereas the increase in synaptic activity required physical presence of glia. This indicated that dendrite development is necessary but not sufficient for PCs to receive excitatory synaptic input and that synaptogenesis requires additional signals. The level of inhibitory synaptic activity was low even in cocultures due to a low incidence of inhibitory interneurons. Taken together, our results reinforce the idea that glial cells promote synaptogenesis in specific neuronal cell types. © 2009 Wiley-Liss, Inc. [source] Magnetic activated cell sorting allows isolation of spermatogonia from adult primate testes and reveals distinct GFRa1-positive subpopulations in menJOURNAL OF MEDICAL PRIMATOLOGY, Issue 2 2010Kathrin Gassei Abstract Background, Isolation of spermatogonial stem cells (SSCs) could enable in vitro approaches for exploration of spermatogonial physiology and therapeutic approaches for fertility preservation. SSC isolation from adult testes is difficult due to low cell numbers and lacking cell surface markers. Glial cell-derived neurotrophic factor family receptor alpha-1 (GFR,1) plays a crucial role for the maintenance of SSCs in rodents and is expressed in monkey spermatogonia. Methods, Magnetic activated cell sorting was employed for the enrichment of GFR,1+ spermatogonia from adult primate testes. Results, Magnetic activated cell sorting of monkey cells enriched GFR,1+ cells threefold. 11.4% of GFR,1+ cells were recovered. 42.9% of GFR,1+ cells were recovered in sorted fractions of human testicular cells, representing a fivefold enrichment. Interestingly, a high degree of morphological heterogeneity among the GFR,1+ cells from human testes was observed. Conclusions, Magnetic activated cell sorting using anti-GFR,1 antibodies provides an enrichment strategy for spermatogonia from monkey and human testes. [source] Intermittent hypoxia during sleep induces reactive gliosis and limited neuronal death in rats: implications for sleep apneaJOURNAL OF NEUROCHEMISTRY, Issue 4 2010Rolando Xavier Aviles-Reyes J. Neurochem. (2010) 112, 854,869. Abstract Sleep apnea (SA) can be effectively managed in humans but it is recognized that when left untreated, SA causes long-lasting changes in neuronal circuitry in the brain. Recent neuroimaging studies gave suggested that these neuronal changes are also present even in patients successfully treated for the acute effects of SA. The cellular mechanisms that account for these changes are not certain but animal models of intermittent hypoxia (IH) during sleep have shown neuronal death and impairment in learning and memory. Reactive gliosis has a drastic effect on neuronal survival and circuitry and in this study we examined the neuro-glial response in brain areas affected by SA. Glial and neuronal alterations were analyzed after 1, 3, 5 and 10 days of exposure to IH (8 h/day during the sleep phase, cycles of 6 min each, 10,21% O2) and observed significant astroglial hyperplasia and hypertrophy in parietal brain cortex and hippocampus by studying gliofibrillary acidic protein, Vimentin, S100B and proliferating cell nuclear antigen expression. In addition, altered morphology, reduced dendrite branching and caspase activation were observed in the CA-1 hippocampal and cortical (layers IV,V) pyramidal neurons at short exposure times (1,3 days). Surprisingly, longer exposure to IH reduced the neuronal death rate and increased neuronal branching in the presence of persistent reactive gliosis. Up-regulation of hypoxia inducible factor 1 alpha (HIF-1,) and mdr-1, a HIF-1, target gene, were observed and increased expression of receptor for advanced end glycated products and its binding partner S100B were also noted. Our results show that a low number of hypoxic cycles induce reactive gliosis and neuronal death whereas continuous exposure to IH cycles reduced the rate of neuronal death and induced neuronal branching on surviving neurons. We hypothesize that HIF-1, and S100B glial factor may improve neuronal survival under hypoxic conditions and propose that the death/survival/re-growth process observed here may underlie brain circuitry changes in humans with SA. [source] Glial cell-derived glutamate mediates autocrine cell volume regulation in the retina: activation by VEGFJOURNAL OF NEUROCHEMISTRY, Issue 2 2008Antje Wurm Abstract Astroglial cells are a source for gliotransmitters such as glutamate and ATP. We demonstrate here that gliotransmitters have autocrine functions in the regulation of cellular volume. Hypoosmotic stress in the presence of inflammatory mediators or oxidative stress, and during blockade or down-regulation of potassium channels, induces swelling of retinal glial cells. Vascular endothelial growth factor inhibits the osmotic swelling of glial cells in retinal slices or isolated cells. This effect was mediated by a kinase domain region/flk-1 receptor-evoked calcium dependent release of glutamate from glial cells, and subsequent stimulation of glial group I/II metabotropic glutamate receptors. Activation of kinase domain region/flk-1 or glutamate receptors evoked an autocrine swelling-inhibitory purinergic signaling cascade that was calcium-independent. This cascade involved the release of ATP and adenosine, and the activation of purinergic P2Y1 and adenosine A1 receptors, resulting in the opening of potassium and chloride channels and inhibition of cellular swelling. The glutamatergic-purinergic regulation of the glial cell volume may be functionally important in the homeostasis of the extracellular space volume during intense neuronal activation which is associated with a swelling of neuronal cell structures in the retina. However, glial cell-derived glutamate may also contribute to the swelling of activated neurons since metabolic poisoning of glial cells by iodoacetate inhibits the neuronal cell swelling mediated by activation of ionotropic glutamate receptors. [source] Glial,Neuronal,Endothelial Interactions are Involved in the Control of GnRH SecretionJOURNAL OF NEUROENDOCRINOLOGY, Issue 3 2002Vincent PrevotArticle first published online: 8 APR 200 Abstract In recent years compelling evidence has been provided that cell,cell interactions involving non-neuronal cells, such as glial and endothelial cells, are important in regulating the secretion of GnRH, the neuropeptide that controls both sexual development and adult reproductive function. Modification of the anatomical relationship that exist between GnRH nerve endings and glial cell processes in the external zone of the median eminence modulates the access of GnRH nerve terminals to the portal vasculature during the oestrous cycle. The establishment of direct neuro-haemal junctions between GnRH neuroendocrine terminals and the portal vasculature on the day of pro-oestrus may be critical for the transfer of GnRH upon its release into the fenestrated capillaries of the median eminence. Notwithstanding the importance of these plastic rearrangements, glial and endothelial cells also regulate GnRH neuronal function via specific cell,cell signalling molecules. While endothelial cells of the median eminence use nitric oxide to effect this regulatory control, astrocytes employ several growth factors, and in particular those of the EGF family and their erbB receptors to facilitate GnRH release during sexual development. Loss of function of each of these erbB receptors involved in the astroglial control of GnRH secretion leads to delayed sexual development. It is clear that regulation of GnRH secretion by cell,cell communication mechanisms other than transsynaptic inputs is an important component of the central neuroendocrine process controlling mammalian reproduction. [source] Histamine-induced Ca2+ entry in human astrocytoma U373 MG cells: Evidence for involvement of store-operated channelsJOURNAL OF NEUROSCIENCE RESEARCH, Issue 15 2008Margarita Barajas Abstract Glial and glia-derived cells express a variety of receptors for neurotransmitters and hormones, the majority of which evoke both Ca2+ release from intracellular stores and Ca2+ entry across the plasma membrane. We investigated the links between histamine H1 receptor activation, Ca2+ release from intracellular stores and Ca2+ influx in human astrocytoma U373 MG cells. Histamine, through a H1 receptor-mediated effect, evoked an increase in cytoplasmic free calcium concentration ([Ca2+]i) that occurred in two phases: an initial, transient, increase owing to Ca2+ mobilization from intracellular pools, and a second, sustained increase dependent on both Ca2+ influx and continuous receptor occupancy. The characteristics of histamine-induced increases in [Ca2+]i were similar to the capacitative entry evoked by emptying of the Ca2+ stores with thapsigargine, and different from that observed when Ca2+ influx was activated with OAG (1-oleoyl-2-acetyl- sn -glycerol), a diacylglycerol (DAG) analog. OAG application or increased endogenous DAG, resulting from DAG kinase inhibition, reduced the histamine-induced response. Furthermore, activation of the DAG target, protein kinase C (PKC), by TPA (12-O-tetradecanoyl 4,-phorbol 13,-acetate) resulted in inhibition of the histamine-induced Ca2+ response, an action prevented by PKC inhibitors. By using reverse transcriptase,polymerase chain reaction analysis, mRNAs for transient receptor potential channels (TRPCs) 1, 4, and 6 as well as for STIM1 (stromal-interacting molecule) and Orai1 were found to be expressed in the U373 MG cells, and confocal microscopy using specific antibodies revealed the presence of the corresponding proteins. Therefore, TRPCs may be candidate proteins forming store-operated channels in the U373 MG cell line. Further, our results confirm the involvement of PKC in the regulation of H1 receptor-induced responses and point out to the existence of a feedback mechanism acting via PKC to limit the increase in [Ca2+]i. © 2008 Wiley-Liss, Inc. [source] Retinal Endothelial Angiogenic Activity: Effects of Hypoxia and Glial (Müller) CellsMICROCIRCULATION, Issue 7 2004YOUSEF YAFAI ABSTRACT Objective: To explore the impact of retinal glial (Müller) cells on survival and neovascularization-related activities of cultured retinal endothelial cells under normoxic and hypoxic conditions. Methods: Bovine retinal endothelial cells (BRECs) were cultured under normoxia or hypoxia (0.5% O2) either alone, together with the human Müller cell line MIO-M1, or in normoxia- or hypoxia-conditioned media of MIO-M1 cells. Cell number, proliferation, apoptotic cell death, and migration of BRECs were determined. Results: Exposure of BRECs to hypoxia for 24 h decreased the number of adherent cells and the proliferation rate, but increased apoptosis and cell migration. Increased apoptosis and decreased proliferation of the BRECs occurred also in the presence of conditioned media of MIO-M1 cells. Under normoxic conditions, co-culture with MIO-M1 cells resulted in increased proliferation, but decreased apoptosis and migration rates of BRECs. Under hypoxic conditions, the Müller cells released elevated amounts of VEGF but their presence decreased proliferation, apoptosis and the migration rates of BRECs. Conclusions: Hypoxia inhibits the proliferation of retinal endothelial cells. Müller cells release soluble mediators that enhance this hypoxia-mediated effect but, under certain conditions (i.e., in co-culture), may protect retinal endothelial cells from apoptosis, thus supporting their survival. Altogether the findings indicate that the key signal necessary to trigger retinal endothelial proliferation under hypoxia remains to be determined. [source] Neuronismo y reticulismo: neuronal,glial circuits unify the reticular and neuronal theories of brain organizationACTA PHYSIOLOGICA, Issue 1 2009A. Verkhratsky Abstract The neuronal doctrine, which shaped the development of neuroscience, was born from a long-lasting struggle between reticularists, who assumed internal continuity of neural networks and neuronists, who defined the brain as a network of physically separated cellular entities, defined as neurones. Modern views regard the brain as a complex of constantly interacting cellular circuits, represented by neuronal networks embedded into internally connected astroglial syncytium. The neuronal,glial circuits endowed with distinct signalling cascades form a ,diffuse nervous net' suggested by Golgi, where millions of synapses belonging to very different neurones are integrated first into neuronal,glial,vascular units and then into more complex structures connected through glial syncytium. These many levels of integration, both morphological and functional, presented by neuronal,glial circuitry ensure the spatial and temporal multiplication of brain cognitive power. [source] Proneural gene ash1 promotes amacrine cell production in the chick retinaDEVELOPMENTAL NEUROBIOLOGY, Issue 2-3 2009Weiming Mao Abstract The diverse types of neurons and Müller glia in the vertebrate retina are believed to arise from common progenitor cells. To better understand how neural diversity is achieved during retinal neurogenesis, we examined the function of ash1, a proneural bHLH gene expressed in progenitor cells throughout retinal neurogenesis. Published studies using retinal explant culture derived from knockout mice concluded that ash1 is required for the production of late-born neurons, including bipolar cells. In this study, gain-of-function experiments were carried out in ovo in embryonic chick retina. In the developing chick retina, expression of ash1 temporally overlapped with, but spatially differed from, the expression of ngn2, also a proneural gene expressed in progenitor cells throughout retinal neurogenesis. Retrovirus-driven overexpression of ash1 in the developing chick retina decreased the progenitor population (BrdU+ or expressing ngn2), expanded the amacrine population (AP2,+ or Pax6+), and reduced bipolar (chx10 mRNA+) and Müller glial (vimentin+) populations. Photoreceptor deficiency occurred after the completion of neurogenesis. The number of ganglion cells, which are born first during retinal neurogenesis, remained unchanged. Similar overexpression of ngn2 did not produce discernible changes in retinal neurogenesis, nor in ash1 expression. These results suggest that ash1 promotes the production of amacrine cells and thus may participate in a regulatory network governing neural diversity in the chick retina. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2009 [source] Testosterone and dihydrotestosterone, but not estradiol, enhance survival of new hippocampal neurons in adult male ratsDEVELOPMENTAL NEUROBIOLOGY, Issue 10 2007Mark D. Spritzer Abstract Past research suggested that androgens may play a role in the regulation of adult neurogenesis within the dentate gyrus. We tested this hypothesis by manipulating androgen levels in male rats. Castrated or sham castrated male rats were injected with 5-Bromo-2,deoxyuridine (BrdU). BrdU-labeled cells in the dentate gryus were visualized and phenotyped (neural or glial) using immunohistochemistry. Castrated males showed a significant decrease in 30-day cell survival within the dentate gyrus but there was no significant change in cell proliferation relative to control males, indicating that androgens positively affect cell survival, but not cell proliferation. To examine the role of testosterone on hippocampal cell survival, males were injected with testosterone s.c. for 30 days starting the day after BrdU injection. Higher doses (0.5 and 1.0 mg/kg) but not a lower dose (0.25 mg/kg) of testosterone resulted in a significant increase in neurogenesis relative to controls. We next tested the role of testosterone's two major metabolites, dihydrotestosterone (DHT), and estradiol, upon neurogenesis. Thirty days of injections of DHT (0.25 and 0.50 mg/kg) but not estradiol (0.010 and 0.020 mg/kg) resulted in a significant increase in hippocampal neurogenesis. These results suggest that testosterone enhances hippocampal neurogenesis via increased cell survival in the dentate gyrus through an androgen-dependent mechanism. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007. [source] Lesion-induced neurogenesis in the hypothalamus is involved in behavioral recovery in adult ring dovesDEVELOPMENTAL NEUROBIOLOGY, Issue 6 2006Gang Chen Abstract Although neurogenesis in the brain of adult vertebrates is region dependent, lesion induces generation of new neurons in non-neurogenic brain regions. These findings raise the question of the role of new neurons in brain repair and functional recovery. We addressed this question by applying previous observations that electrolytic lesion induced neurogenesis in the ventromedial nucleus (VMN) of the hypothalamus in adult ring doves. Such lesions disrupted the male's courtship behavior, which could be reinstated after rehabilitation with a female. We investigated whether lesion-induced newborn neurons in the VMN facilitate the recovery of courtship behavior in the lesioned birds. We conducted systematic observations of cytological, morphological, and neuroanatomical changes in the lesioned VMN, and concurrently we monitored behavioral changes. Using a multitude of specific cell markers, we found a well-circumscribed cellular zone that proliferated actively. This highly proliferative zone initially appeared along the periphery of the lesion site, where cells had high levels of expression of neuronal, glial, and neurovascular markers. As newborn neurons matured at the lesion site, the necrosis gradually decreased, whereas a downsized proliferative zone relocated to a region ventral to the VMN. Some of the mature neurons were found to project to the midbrain vocal nuclei. Restoration of these projection neurons coincided with the recovery of courtship vocalization. Finally, we found that a social factor, that is, when the male doves were cohoused with a mate, facilitated neurogenesis and behavioral recovery. These results suggest that lesion-induced neurogenesis contributes to behavioral recovery in adult animals. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source] Cell proliferation in the Rana catesbeiana auditory medulla over metamorphic developmentDEVELOPMENTAL NEUROBIOLOGY, Issue 2 2006Judith A. Chapman Abstract During metamorphic development, bullfrogs (Rana catesbeiana) undergo substantial morphological, anatomical, and physiological changes as the animals prepare for the transition from a fully-aquatic to a semi-terrestrial existence. Using BrdU incorporation and immunohistochemistry, we quantify changes in cell proliferation in two key auditory brainstem nuclei, the dorsolateral nucleus and the superior olivary nucleus, over the course of larval and early postmetamorphic development. From hatchling through early larval stages, numbers of proliferating cells increase in both nuclei, paralleling the overall increase in total numbers of cells available for labeling. Numbers of proliferating cells in the superior olivary nucleus decrease during the late larval and deaf periods, and significantly increase during metamorphic climax. Proliferating cells in the dorsolateral nucleus increase in number from hatchling to late larval stages, decrease during the deaf period, and increase during climax. In both nuclei, numbers of proliferating cells decrease during the postmetamorphic froglet stage, despite increases in the number of cells available for label. Newly generated cells express either glial- or neural-specific phenotypes beginning between 1 week and 1 month post-BrdU injection, respectively, while some new cells express ,-aminobutyric acid within 2 days of mitosis. Our data show that these auditory nuclei dramatically up-regulate mitosis immediately prior to establishment of a transduction system based on atmospheric hearing. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2005 [source] GDNF and insulin cooperate to enhance the proliferation and differentiation of enteric crest-derived cellsDEVELOPMENTAL NEUROBIOLOGY, Issue 2 2003Paul J. Focke Abstract Previously we have shown that glial derived neurotrophic factor (GDNF) stimulates modest increases in the proliferation of avian enteric crest-derived cells and similar increases in the phosphorylation of the phosphoinositide 3,kinase (PI3K) downstream substrate Akt (Akt-P). In the present study we tested whether GDNF-independent increases in PI3K activation would be sufficient to support proliferation. We found that insulin induces a large increase in the phosphorylation of Akt and can initiate DNA synthesis in avian enteric crest-derived cells, but is unable to maintain proliferation over time in culture, measured by BrdU incorporation. GDNF can also initiate DNA synthesis, but it too is unable to maintain BrdU incorporation in cultured enteric crest-derived cells. Sustained incorporation of BrdU after 16,48 h in culture is shown to be dependent on a combination of GDNF and insulin. Using a phospho-specific antibody, we found Akt-P levels to be similar in the proliferating (BrdU incorporation maintained from 16,48 h in culture) and nonproliferating populations, suggesting that Akt-P levels were not solely controlling the extent of BrdU incorporation. A minimum level of PI3K activation, however, is required, as shown by the dose-dependent reduction in proliferation with the PI3K inhibitor LY-294002. We conclude that the integrity of the PI3K pathway is essential for enteric crest-derived cell proliferation, but that the absolute levels of Akt-P do not determine the extent of proliferation. The enhanced proliferation in cultures containing both GDNF and insulin suggests that other pathways are involved, including the possibility that PI3K downstream effectors other than Akt are important in the regulation of avian enteric crest-derived cell proliferation. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 151,164, 2003 [source] Phosphatidylinositol-3-OH kinase regulatory subunits are differentially expressed during development of the rat cerebellumDEVELOPMENTAL NEUROBIOLOGY, Issue 1 2001José L. Trejo Abstract Recent evidence implicates a central role for PI3K signalling in mediating cell survival during the process of neuronal differentiation. Although PI3K activity is stimulated by a wide range of growth factors and cytokines in different cell lines and tissues, activation of this pathway by insulin-like growth factor I (IGF-I) most likely represents the main survival signal during neuronal differentiation. IGF-I is highly expressed during development of the central nervous system, and thus is a critical factor for the development and maturation of the cerebellum. Upon ligand binding, the IGF-I receptor phosphorylates tyrosine residues in SHC and insulin receptor substrates (IRSs) initiating two main signalling cascades, the MAP kinase and the phosphatidylinositol 3-kinase (PI3K) pathways. Activated PI3K is composed of a catalytic subunit (p110, or ,) associated with one of a large family of regulatory subunits (p85,, p85,, p55,, p55,, and p50,). To evaluate the contributions of these various regulatory subunits to neuronal differentiation, we have used antibodies specific for each of the PI3K subunits. Using these antisera, we now demonstrate that PI3K subunits are differentially regulated in cerebellar development, and that the expression level of the p55, regulatory subunit reaches a maximum during postnatal development, decreasing thereafter to low levels in the adult cerebellum. Furthermore, our studies reveal that the distribution of the various PI3K regulatory subunits varies during development of the cerebellum. Interestingly, p55, is expressed in both glial and neuronal cells; moreover, in Purkinje neurones, this subunit colocalises with the IGF-IR. © 2001 John Wiley & Sons, Inc. J Neurobiol 47: 39,50, 2001 [source] Development of an in vitro blood,brain barrier model to study the effects of endosulfan on the permeability of tight junctions and a comparative study of the cytotoxic effects of endosulfan on rat and human glial and neuronal cell culturesENVIRONMENTAL TOXICOLOGY, Issue 3 2006Melissa P. L. Chan Abstract Endosulfan, an organochlorine (OC) insecticide that belongs to the cyclodiene group, is one of the most commonly used pesticides to control pests in vegetables, cotton, and fruits. Porcine brain microvascular endothelial cells were used to develop a model to study the effects of endosulfan on the permeability of tight junctions in the blood,brain barrier (BBB). BBB permeability, measured as transendothelial electrical resistance, decreased in a dose- and time-dependent manner when treated with ,-endosulfan, ,-endosulfan, or endosulfan sulfate. Cytotoxicity testing revealed that the three endosulfans did not cause cell death at concentrations of 10 ,M and below. The ratio of the average permeability of the filter-grown endothelial cell monolayer to 14C-endosulfan (Pe) going from the outer to the inner compartments with that going from the inner to the outer compartments was approximately 1:1.2,2.1 after exposure to concentrations of 0.01,10 ,M. ,-Endosulfan, ,-endosulfan, and endosulfan sulfate had cytotoxic effects on rat glial (C6) and neuronal (PC12) cell cultures as well as on human glial (CCF-STTG1) and neuronal (NT2) cell cultures. The effects of ,-endosulfan were highly selective, with a wide range of LC50 values found in the different cultures, ranging from 11.2 ,M for CCF-STTG1 cells to 48.0 ,M for PC12 cells. In contrast, selective neurotoxicity was not so manifest in glial and neuronal cell cultures after exposure to endosulfan sulfate, as LC50 values were in the range of 10.4,21.6 ,M. CCF-STTG1 cells were more sensitive to ,-endosulfan and endosulfan sulfate, whereas NT2 cells were more sensitive to ,-endosulfan. © 2006 Wiley Periodicals, Inc. Environ Toxicol 21: 223,235, 2006. [source] Increased GFAP and S100, but not NSE serum levels after subarachnoid haemorrhage are associated with clinical severityEUROPEAN JOURNAL OF NEUROLOGY, Issue 6 2006P. E. Vos Assessment of initial disease severity after subarachnoid haemorrhage (SAH) remains difficult. The objective of the study is to identify biochemical markers of brain damage in peripheral blood after SAH. Hospital admission S100,, glial fibrillary acidic protein (GFAP) and neuron-specific enolase (NSE) serum levels were analysed in 67 patients with SAH. Disease severity was determined by using the World Federation of Neurological Surgeons (WFNS) scale and the Fisher CT (computerized tomography) grading scale. Mean astroglial serum concentrations taken at hospital admission were increased (S100, 2.8-fold and GFAP 1.8-fold) compared with the upper limit of normal laboratory reference values (P95). The mean NSE concentration was within normal limits. S100, (P < 0.001) and GFAP (P =0.011) but not NSE levels were higher in patients who were in coma at the time of hospital admission compared with patients who were not. Similarly S100, and GFAP but not NSE serum levels increased with higher WFNS scores, raised intracranial pressure and higher CT Fisher grade scores. Concerning the location of the aneurysm, S100, and GFAP serum levels were within normal limits after a perimesencephalic type of haemorrhage and significantly increased after aneurysmal type SAH. Increased glial (S100, and GFAP) but not neuronal (NSE) protein serum concentrations are found after SAH, associated to the clinical severity of the initial injury. [source] Impact of basic FGF expression in astrocytes on dopamine neuron synaptic function and developmentEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2006Caroline Forget Abstract Behavioural sensitization to amphetamine (AMPH) requires action of the drug in the ventral midbrain where dopamine (DA) neurons are located. In vivo studies suggest that AMPH sensitization requires enhanced expression of basic fibroblast growth factor (bFGF) in the nucleus of midbrain astrocytes. One idea is that the AMPH-induced increase in bFGF expression in astrocytes leads to enhanced secretion of this peptide and to long-term plasticity in DA neurons. To study directly the effects of astrocytic expression of bFGF on DA neurons, we established a cell-culture model of mesencephalic astrocytes and DA neurons. Immunolabelling showed that even in the absence of a pharmacological stimulus, the majority of mesencephalic astrocytes in culture express bFGF at a nuclear level. Arguing against the idea that bFGF was secreted, bFGF was undetectable in the extracellular medium (below 10 pg/mL). However, supplementing culture medium with exogenous bFGF at standard concentrations (20 ng/mL) led to a dramatic change in the morphology of astrocytes, increased spontaneous DA release, and inhibited synapse formation by individual DA neurons. RNA interference (siRNA) against bFGF mRNA, caused a reduction in DA release but produced no change in synaptic development. Together these data demonstrate that under basal conditions (in the absence of a pharmacological stimulus such as amphetamine) bFGF is not secreted even though there is abundant nuclear expression in astrocytes. The effects of bFGF seen here on DA neurons are thus likely to be mediated through more indirect glial,neuronal interactions, leading to enhanced DA release without a necessary change in synapse number. [source] Induction of rapid, activity-dependent neuronal,glial remodelling in the adult rat hypothalamus in vitroEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2003Sarah L. Langle Abstract The hypothalamic oxytocinergic system offers a remarkable model of morphological plasticity in the adult because its neurons and astrocytes undergo mutual remodelling in relation to differing physiological conditions. Among various factors involved in such plasticity, oxytocin (OT) itself appears of primary importance as its central administration resulted in morphological changes similar to those brought on by physiological stimuli. In the present study, we applied OT on acute hypothalamic slices from adult rats that included the supraoptic nucleus. Using ultrastructural morphometric analyses, we found that it induced a significant reduction of astrocytic coverage of OT neurons, leaving their surfaces directly juxtaposed, to an extent similar to that detected in vivo under conditions like lactation. These neuronal,glial changes were rapid and reversible, occurring within a few hours, and specifically mediated via OT receptors. They were potentiated by oestrogen and depended on calcium mobilization and de novo protein synthesis. Moreover, they depended on concurrent neuronal activation brought on by hyperosmotic stimulation or blockade of inhibitory GABAergic neurotransmission; they were inhibited by blockade of glutamatergic receptors. Taken together, our observations show that intrahypothalamic release of OT affects not only neuronal activation of the OT system but its morphological plasticity as well. Moreover, the activity dependence of the OT-induced changes strongly suggests that astrocytes can sense the level of activity of adjacent neurons and/or afferent input and this can subsequently act as a signal to bring on the neuronal and glial conformational changes. [source] Differential regulation of trkA and p75 in noradrenergic pelvic autonomic ganglion cells after deafferentation of their cholinergic neighboursEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2001Janet R. Keast Abstract In rats, following lesion of lumbar or sacral preganglionic axons, many pelvic ganglion cells undergo axogenesis to form baskets of terminals around select populations of nearby ganglion cells. The aim of the current study was to address mechanisms underlying initiation of this sprouting, focusing on a possible role for nerve growth factor (NGF). Immunohistochemical localization of NGF receptors (trkA and p75) showed that virtually all noradrenergic and a minority of cholinergic pelvic neurons expressed both receptors. Terminals immunoreactive for each substance were found in pelvic viscera. In pelvic ganglia, many glial cells expressed p75 but not trkA, and very few lumbar or sacral preganglionic neurons expressed either receptor. Lumbar and/or sacral preganglionic inputs were removed from ganglion cells by cutting the hypogastric, pelvic or both nerves, and tissues analysed 8 days later. Levels of receptor expression in noradrenergic pelvic ganglion cells were estimated by calculating the proportion that were receptor-immunopositive, and quantifying the intensity of trkA or p75 immunofluorescence. No lesion had a significant effect on trkA expression, however, a marked decrease in p75 occurred after cutting pelvic nerves, i.e. after deafferentation of neighbouring cholinergic neurons. These injuries appeared to cause little overall change in glial p75 expression. This study shows that manipulations that trigger sprouting from noradrenergic pelvic neurons cause downregulation of p75 but not trkA. Interestingly, this is occurring while some of their target organs are synthesizing high levels of NGF. This contrasts with other NGF-sensitive cells, in which one or both receptor types are upregulated by increased exposure to the ligand. The current study is also the first to show a change in p75 expression in neurons that are neither deafferented nor axotomized. [source] TGF-,1/SMAD signaling induces astrocyte fate commitment in vitro: Implications for radial glia developmentGLIA, Issue 10 2007Joice Stipursky Abstract Radial glial (RG) cells are specialized type of cell, which functions as neuronal precursors and scaffolding guides to migrating neurons during cerebral cortex development. After neurogenesis and migration are completed, most of RG cells transform into astrocytes. Mechanism and molecules involved in this process are not completely elucidated. We previously demonstrated that neurons activate the promoter of the astrocyte maturation marker GFAP in astrocytes by secretion of transforming growth factor beta 1 (TGF-,1) in vitro. Here, we studied the role of neurons and TGF-,1 pathway in RG differentiation. To address this question, we employed cortical progenitor cultures enriched in GLAST/nestin double-labeled cells, markers of RG cells. TGF-,1 and conditioned medium derived from neuron-astrocyte cocultures (CM) decreased the number of cells expressing the precursor marker nestin and increased that expressing GFAP in cortical progenitor cultures. These events were impaired by addition of neutralizing antibodies against TGF-,1. Increase in the number of GFAP positive cells was associated with Smads 2/3 nuclear translocation, a hallmark of TGF-,1 pathway activation. PCR-assays revealed a decrease in the levels of mRNA for the RG marker, BLBP (brain lipid binding protein), due to TGF-,1 and CM treatment. We further identified TGF-,1 receptor in cortical progenitor cultures suggesting that these cells might be target for TGF-,1 during development. Our work provides strong evidence that TGF-,1 might be a novel factor involved in RG-astrocyte transformation and highlights the role of neuron-glia interaction in this process. © 2007 Wiley-Liss, Inc. [source] BMP and LIF signaling coordinately regulate lineage restriction of radial glia in the developing forebrainGLIA, Issue 1 2007Hedong Li Abstract The earliest radial glia are neural stem cells that guide neural cell migration away from ventricular zones. Subsequently, radial glia become lineage restricted during development before they differentiate into more mature cell types in the CNS. We have previously shown that subpopulations of radial glial cells express markers for glial and neuronal restricted precursors (GRPs and NRPs) in expression patterns that are temporally and spatially regulated during CNS development. To characterize further the mechanism of this regulation in rat forebrain, we tested whether secreted factors that are present during development effect lineage restriction of radial glia. We show here that in radial glial cultures LIF/CNTF up-regulates, whereas BMP2 down-regulates GRP antigens recognized by monoclonal antibodies A2B5/4D4. These activities combined with secretion of BMPs dorsally and LIF/CNTF from the choroid plexus provide an explanation for the graded distribution pattern of A2B5/4D4 in dorso-lateral ventricular regions in vivo. The regulation by LIF/CNTF of A2B5/4D4 is mediated through the JAK-STAT pathway. BMP2 promotes expression on radial glial cells of the NRP marker polysialic acid most likely by regulating N-CAM expression itself, as well as at least one polysialyl transferase responsible for synthesis of polysialic acid on N-CAM. Taken together, these results suggest that generation of lineage-restricted precursors is coordinately regulated by gradients of the secreted factors BMPs and LIF/CNTF during development of dorsal forebrain. © 2006 Wiley-Liss, Inc. [source] Specific characteristic of radial glia in the human fetal telencephalonGLIA, Issue 1 2004Nada Zecevic Abstract Phenotypic characteristics of cells in the developing human telencephalic wall were analyzed using electron microscopy and immunocytochemistry with various glial and neuronal cell markers. The results suggest that multiple defined cell types emerge in the neocortical proliferative zones and are differentially regulated during embryonic development. At 5,6 weeks gestation, three major cell types are observed. Most proliferating ventricular zone (VZ) cells are labeled with radial glial (RG) markers such as vimentin, glial fibrillary acidic protein (GFAP), and glutamate astrocyte-specific transporter (GLAST) antibodies. A subpopulation of these RG cells also express the neuronal markers , III-tubulin, MAP-2, and phosphorylated neurofilament SMI-31, in addition to the stem cell marker nestin, indicating their multipotential capacity. In addition, the presence of VZ cells that immunoreact only with neuronal markers indicates the emergence of restricted neuronal progenitors. The number of multipotential progenitors in the VZ gradually decreases, whereas the number of more restricted progenitors increases systematically during the 3-month course of human corticogenesis. These results suggest that multipotential progenitors coexist with restricted neuronal progenitors and RG cells during initial corticogenesis in the human telencephalon. Since the multipotential VZ cells disappear during the major wave of neocortical neurogenesis, the RG and restricted neuronal progenitors appear to serve as the main sources of cortical neurons. Thus, the diversification of cells in human VZ and overlying subventricular zone (SVZ) begins earlier and is more pronounced than in rodents. © 2004 Wiley-Liss, Inc. [source] Editorial: To be glial or not,how glial are the precursors of neurons in development and adulthood?GLIA, Issue 1 2003Dr. Magdalena Götz No abstract is available for this article. [source] Molecular architecture of myelinated peripheral nerves is supported by calorie restriction with agingAGING CELL, Issue 2 2009Sunitha Rangaraju Summary Peripheral nerves from aged animals exhibit features of degeneration, including marked fiber loss, morphological irregularities in myelinated axons and notable reduction in the expression of myelin proteins. To investigate how protein homeostatic mechanisms change with age within the peripheral nervous system, we isolated Schwann cells from the sciatic nerves of young and old rats. The responsiveness of cells from aged nerves to stress stimuli is weakened, which in part may account for the observed age-associated alterations in glial and axonal proteins in vivo. Although calorie restriction is known to slow the aging process in the central nervous system, its influence on peripheral nerves has not been investigated in detail. To determine if dietary restriction is beneficial for peripheral nerve health and glial function, we studied sciatic nerves from rats of four distinct ages (8, 18, 29 and 38 months) kept on an ad libitum (AL) or a 40% calorie restricted diet. Age-associated reduction in the expression of the major myelin proteins and widening of the nodes of Ranvier are attenuated by the dietary intervention, which is paralleled with the maintenance of a differentiated Schwann cell phenotype. The improvements in nerve architecture with diet restriction, in part, are underlined by sustained expression of protein chaperones and markers of the autophagy,lysosomal pathway. Together, the in vitro and in vivo results suggest that there might be an age-limit by which dietary intervention needs to be initiated to elicit a beneficial response on peripheral nerve health. [source] Comparative study of enterovirus 71 infection of human cell linesJOURNAL OF MEDICAL VIROLOGY, Issue 1 2003Yu-Ye Wen Abstract The cell tropism of enterovirus 71 (Enteroviridae) in neuronal, glial and laryngeal cells. The 4643 strain, an enterovirus 71 isolate from a patient in Taiwan, was used to infect three human cell lines representing neuronal cells (SK-N-SH, neuroblastoma), glial cells (U373MG, glioblastoma), and laryngeal cells (HEp-2, larynx epidermoid carcinoma). Immunofluorescent staining and transmission electron microscopy (TEM) were used to detect mature enterovirus 71 4643 virions in these cell lines. The three cell lines were also compared for presence of virus-mediated cytopathic effect (CPE), synthesis of infected cell-specific proteins, viral (,) RNA, and virus replication rate. Virus particles were detected by TEM, and viral replication increased over time, indicating the existence and release of mature viruses from all three infected cell lines. The most severe CPE and the highest viral replication rate were observed in the SK-N-SH cells. Further screening of the infected cell lines by microarray analysis revealed that the neuron growth factor receptor (NGFR) gene was uniquely upregulated in infected SK-N-SH cells, implying that the receptor encoded by this gene may be involved in cell tropism. The data show that neurons are vulnerable to enterovirus 71 4643 infection and are consistent with the clinical observation that enterovirus 71 4643 targets mainly neuronal cells but is also found in many organs in conjunction with an inflammatory reaction. J. Med. Virol. 70:109,118, 2003. © 2003 Wiley-Liss, Inc. [source] Developmental changes in the ultrastructure of the lamprey lateral line nerve during metamorphosisJOURNAL OF MORPHOLOGY, Issue 7 2009S. Gelman Abstract The ultrastructure of the trunk lateral line nerve of larval and adult lampreys was studied with transmission electron microscopy. We confirmed that lampreys' lateral line nerve lacks myelin. Nevertheless, all axons were wrapped by Schwann cell processes. In the larval nerve, gaps between Schwann cells were observed, where the axolemma was covered only by a basal lamina, indicating an earlier developmental stage. In the adult nerve, glial (Schwann cell) ensheathment was mostly complete. Additionally, we observed variable ratios of axons to Schwann cells in larval and adult preparations. In the larval nerve, smaller axons were wrapped by one Schwann cell. Occasionally, a single Schwann cell surrounded two axons. Larger axons were associated with two to five Schwann cells. In the adult nerve, smaller axons were surrounded by one, but larger axons by three to eight Schwann cells. The larval epineurium contained large adipose cells, separated from each other by single fibroblast processes. This layer of adipose tissue was reduced in adult preparation. The larval perineurium was thin, and the fibroblasts, containing large amounts of glycogen granules, were arranged loosely. The adult perineurium was thicker, consisting of at least three layers of fibroblasts separated by collagen fibrils. The larval and adult endoneurium contained collagen fibrils oriented orthogonally to each other. Both larval and adult lateral line nerves possessed a number of putative fascicles weakly defined by a thin layer of perineurial fibroblasts. These results indicate that after a prolonged larval stage, the lamprey lateral line nerve is subjected to additional maturation processes during metamorphosis. J. Morphol. 2009. © 2009 Wiley-Liss, Inc. [source] Functional implications for Kir4.1 channels in glial biology: from K+ buffering to cell differentiationJOURNAL OF NEUROCHEMISTRY, Issue 3 2008Michelle L. Olsen Abstract Astrocytes and oligodendrocytes are characterized by a very negative resting potential and a high resting permeability for K+ ions. Early pharmacological and biophysical studies suggested that the resting potential is established by the activity of inwardly rectifying, Ba2+ sensitive, weakly rectifying Kir channels. Molecular cloning has identified 16 Kir channels genes of which several mRNA transcripts and protein products have been identified in glial cells. However, genetic deletion and siRNA knock-down studies suggest that the resting conductance of astrocytes and oligodendrocytes is largely due to Kir4.1. Loss of Kir4.1 causes membrane depolarization, and a break-down of K+ and glutamate homeostasis which results in seizures and wide-spread white matter pathology. Kir channels have also been shown to act as critical regulators of cell division whereby Kir function is correlated with an exit from the cell cycle. Conversely, loss of functional Kir channels is associated with re-entry of cells into the cell cycle and gliosis. A loss of functional Kir channels has been shown in a number of neurological diseases including temporal lobe epilepsy, amyotrophic lateral sclerosis, retinal degeneration and malignant gliomas. In the latter, expression of Kir4.1 is sufficient to arrest the aberrant growth of these glial derived tumor cells. Kir4.1 therefore represents a potential therapeutic target in a wide variety of neurological conditions. [source] Histamine induces neural stem cell proliferation and neuronal differentiation by activation of distinct histamine receptorsJOURNAL OF NEUROCHEMISTRY, Issue 2 2008Anayansi Molina-Hernández Abstract Histamine has neurotransmitter/neuromodulator functions in the adult brain, but its role during CNS development has been elusive. We studied histamine effects on proliferation, cell death and differentiation of neuroepithelial stem cells from rat cerebral cortex in vitro. RT-PCR and Western blot experiments showed that proliferating and differentiated cells express histamine H1, H2 and H3 receptors. Treatments with histamine concentrations (100 nM,1 mM) caused significant increases in cell numbers without affecting Nestin expression. Cell proliferation was evaluated by BrdU incorporation; histamine caused a significant increase dependent on H2 receptor activation. Apoptotic cell death during proliferation was significantly decreased at all histamine concentrations, and cell death was promoted in a concentration-dependent manner by histamine in differentiated cells. Immunocytochemistry studies showed that histamine increased 3-fold the number of neurons after differentiation, mainly by activation of H1 receptor, and also significantly decreased the glial (astrocytic) cell proportion, when compared to control conditions. In summary, histamine increases cell number during proliferative conditions, and has a neuronal-differentiating action on neural stem cells, suggesting that the elevated histamine concentration reported during development might play a role in cerebrocortical neurogenesis, by activation of H2 receptors to promote proliferation of neural precursors, and favoring neuronal fate by H1 -mediated stimulation. [source] Expression of 3-hydroxyisobutyrate dehydrogenase in cultured neural cellsJOURNAL OF NEUROCHEMISTRY, Issue 4 2008Radovan Murín Abstract The branched-chain amino acids (BCAAs) , isoleucine, leucine, and valine , belong to the limited group of substances transported through the blood,brain barrier. One of the functions they are thought to have in brain is to serve as substrates for meeting parenchymal energy demands. Previous studies have shown the ubiquitous expression of a branched-chain alpha-keto acid dehydrogenase among neural cells. This enzyme catalyzes the initial and rate-limiting step in the irreversible degradative pathway for the carbon skeleton of valine and the other two branched-chain amino acids. Unlike the acyl-CoA derivates in the irreversible part of valine catabolism, 3-hydroxyisobutyrate could be expected to be released from cells by transport across the mitochondrial and plasma membranes. This could indeed be demonstrated for cultured astroglial cells. Therefore, to assess the ability of neural cells to make use of this valine-derived carbon skeleton as a metabolic substrate for the generation of energy, we investigated the expression in cultured neural cells of the enzyme processing this hydroxy acid, 3-hydroxyisobutyrate dehydrogenase (HIBDH). To achieve this, HIBDH was purified from bovine liver to serve as antigen for the production of an antiserum. Affinity-purified antibodies against HIBDH specifically recognized the enzyme in liver and brain homogenates. Immunocytochemistry demonstrated the ubiquitous expression of HIBDH among cultured glial (astroglial, oligodendroglial, microglial, and ependymal cells) and neuronal cells. Using an RT-PCR technique, these findings were corroborated by the detection of HIBDH mRNA in these cells. Furthermore, immunofluorescence double-labeling of astroglial cells with antisera against HIBDH and the mitochondrial marker pyruvate dehydrogenase localized HIBDH to mitochondria. The expression of HIBDH in neural cells demonstrates their potential to utilize valine imported into the brain for the generation of energy. [source] Modulation of peroxisome proliferator-activated receptor-, activity by N -acetyl cysteine attenuates inhibition of oligodendrocyte development in lipopolysaccharide stimulated mixed glial culturesJOURNAL OF NEUROCHEMISTRY, Issue 3 2008Manjeet K. Paintlia Abstract Glial cells secrete proinflammatory mediators in the brain in response to exogenous stimuli such as infection and injury. Previously, we documented that systemic maternal lipopolysaccharide (LPS)-exposure at embryonic gestation day 18 causes oligodendrocyte (OL)-injury/hypomyelination in the developing brain which can be attenuated by N -acetyl cysteine (NAC; precursor of glutathione). The present study delineates the underlying mechanism of NAC-mediated attenuation of inhibition of OL development in LPS-stimulated mixed glial cultures. Factors released by LPS-stimulated mixed glial cultures inhibited OL development as shown by decrease in both proliferation 3bromo-deoxyuridine+/chondroitin sulfate proteoglycan,NG2+, hereafter BrdU+/NG+ and differentiation (O4+ and myelin basic protein+) of OL-progenitors. Correspondingly, an impairment of peroxisomal proliferation was shown by a decrease in the level of peroxisomal proteins in the developing OLs following exposure to LPS-conditioned media (LCM). Both NAC and WY14643, a peroxisome proliferator-activated receptor (PPAR)-, agonist attenuated these LCM-induced effects in OL-progenitors. Similar to WY14643, NAC attenuated LCM-induced inhibition of PPAR-, activity in developing OLs. Studies conducted with cytokines and diamide (a thiol-depleting agent) confirmed that cytokines are active agents in LCM which may be responsible for inhibition of OL development via peroxisomal dysfunction and induction of oxidative stress. These findings were further corroborated by similar treatment of developing OLs generated from PPAR-,(,/,) and wild-type mice or B12 oligodendroglial cells co-transfected with PPAR-, small interfering RNAs/pTK-PPREx3-Luc plasmids. Collectively, these data provide evidence that the modulation of PPAR-, activity, thus peroxisomal function by NAC attenuates LPS-induced glial factors-mediated inhibition of OL development suggesting new therapeutic interventions to prevent the devastating effects of maternal infections. [source] |