Glacier Ice (glacier + ice)

Distribution by Scientific Domains


Selected Abstracts


Debris-covered Glaciers and Rock Glaciers in the Nanga Parbat Himalaya, Pakistan

GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 1 2000
John F. Shroder
The origin and mobilization of the extensive debris cover associated with the glaciers of the Nanga Parbat Himalaya is complex. In this paper we propose a mechanism by which glaciers can form rock glaciers through inefficiency of sediment transfer from glacier ice to meltwater. Inefficient transfer is caused by various processes that promote plentiful sediment supply and decrease sediment transfer potential. Most debris-covered glaciers on Nanga Parbat with higher velocities of movement and/ or efficient debris transfer mechanisms do not form rock glaciers, perhaps because debris is mobilized quickly and removed from such glacier systems. Those whose ice movement activity is lower and those where inefficient sediment transfer mechanisms allow plentiful debris to accumulate, can form classic rock glaciers. We document here with maps, satellite images, and field observations the probable evolution of part of a slow and inefficient ice glacier into a rock glacier at the margins of Sachen Glacier in c. 50 years, as well as several other examples that formed in a longer period of time. Sachen Glacier receives all of its nourishment from ice and snow avalanches from surrounding areas of high relief, but has low ice velocities and no efficient system of debris removal. Consequently it has a pronounced digitate terminus with four lobes that have moved outward from the lateral moraines as rock glaciers with prounced transverse ridges and furrows and steep fronts at the angle of repose. Raikot Glacier has a velocity five times higher than Sachen Glacier and a thick cover of rock debris at its terminus that is efficienctly removed. During the advance stage of the glacier since 1994, ice cliffs were exposed at the terminus, and an outbreak flood swept away much debris from its margins and terminus. Like the Sachen Glacier that it resembles, Shaigiri Glacier receives all its nourishment from ice and snow avalanches and has an extensive debris cover with steep margins close to the angle of repose. It has a high velocity similar to Raikot Glacier and catastrophic breakout floods have removed debris from its terminus twice in the recent past. In addition, the Shaigiri terminus blocked the Rupal River during the Little Ice Age and is presently being undercut and steepened by the river. With higher velocities and more efficient sediment transfer systems, neither the Raikot nor the Shaigiri form classic rock-glacier morphologies. [source]


Glacial modification of granite tors in the Cairngorms, Scotland,

JOURNAL OF QUATERNARY SCIENCE, Issue 8 2006
A. M. Hall
Abstract A range of evidence indicates that many granite tors in the Cairngorms have been modified by the flow of glacier ice during the Pleistocene. Comparisons with SW England and the use of a space,time transformation across 38 tor groups in the Cairngorms allow a model to be developed for progressive glacial modification. Tors with deeply etched surfaces and no, or limited, block removal imply an absence of significant glacial modification. The removal of superstructure and blocks, locally forming boulder trains, and the progressive reduction of tors to stumps and basal slabs represent the more advanced stages of modification. Recognition of some slabs as tor stumps from which glacial erosion has removed all superstructure allows the original distribution of tors to be reconstructed for large areas of the Cairngorms. Unmodified tors require covers of non-erosive, cold-based ice during all of the cold stages of the Middle and Late Pleistocene. Deformation beneath cold-based glacier ice is capable of the removal of blocks but advanced glacial modification requires former wet-based glacier ice. The depth of glacial erosion at former tor sites remains limited largely to the partial or total elimination of the upstanding tor form. Cosmogenic nuclide exposure ages (Phillips et al., 2006) together with data from weathering pit depths (Hall and Phillips, 2006), from the surfaces of tors and large erratic blocks require that the glacial entrainment of blocks from tors occurred in Marine Isotope Stages (MIS) 4,2, 6 and, probably, at least one earlier phase. The occurrence of glacially modified tors on or close to, the main summits of the Cairngorms requires full ice cover over the mountains during these Stages. Evidence from the Cairngorms indicates that tor morphology can be regarded as an important indicator of former ice cover in many formerly glaciated areas, particularly where other evidence of ice cover is sparse. Recognition of the glacial modification of tors is important for debates about the former existence of nunataks and refugia. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Permafrost and Little Ice Age glacier relationships, Posets Massif, Central Pyrenees, Spain

PERMAFROST AND PERIGLACIAL PROCESSES, Issue 3 2004
Ralph Lugon
Abstract This paper contributes to the study of permafrost in the Pyrenees by reporting geoelectrical investigations and thermal measurement on the Little Ice Age (LIA) forefields of two glaciers. The aim was to assess the internal composition of sedimentary bodies (debris rock glaciers and moraine deposits) located in this proglacial environment. Ground ice was prospected using two DC resistivity techniques: vertical electrical soundings and resistivity mapping at a fixed pseudo-depth. Extreme specific resistivities ranging between 1 and 25,M,,m were detected under a thin (1,2,m) unfrozen layer, indicating the presence of a massive ice layer, certainly buried glacier ice. This ice of glacial origin probably covers former permafrost bodies, i.e. a much thicker layer of perennially frozen sediments. Low subsurface temperatures measured on the deposits indicate that buried glacier ice could have been preserved on top of permafrost since the end of the LIA or earlier Holocene glacier advances. This stratigraphy demonstrates that glaciers and pre-existing perennially frozen sediments (permafrost) were in contact during the LIA. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Structure and composition of a tidewater glacier push moraine, Svalbard, revealed by DC resistivity profiling

BOREAS, Issue 1 2009
LENE KRISTENSEN
A push moraine deposited by the surging tidewater glacier Paulabreen (Svalbard) was investigated using 2D resistivity profiling. Six longitudinal and transverse profiles were obtained on the moraine and the resistivities were compared with data from three boreholes. Four profiles indicate that the inner part of the moraine is ice-cored and that the buried glacier ice is more than 30 m thick. A transverse profile shows evidence of basal crevasses near the former glacier margin. Three profiles cross the former glacier margin and onto a proglacial plain which dips slightly away from the former glacier margin. Low resistivities were encountered where borehole and field observations indicate that the plain consists of marine muds with a high salt content. This landform has previously been interpreted as a slab of seabed pushed up in front of the surging glacier, possibly facilitated by permafrost in the seabed. We suggest, alternatively, that the landform originated from sediments extruded from below (or pushed in front of) the glacier at the surge terminus and deposited as a debrisflow. Ground penetrating radar can reveal small-scale structures, but larger structures and overall composition are better imaged by resistivity measurements. [source]


Formation and disintegration of a high-arctic ice-cored moraine complex, Scott Turnerbreen, Svalbard

BOREAS, Issue 4 2001
KARI SLETTEN
Englacial debris structures, morphology and sediment distribution at the frontal part and at the proglacial area of the Scott Turnerbreen glacier have been studied through fieldwork and aerial photograph interpretation. The main emphasis has been on processes controlling the morphological development of the proglacial area. Three types of supraglacial ridges have been related to different types of englacial debris bands. We suggest that the sediments were transported in thrusts, along flow lines and in englacial meltwater channels prior to, and during a surge in, the 1930s, before the glacier turned cold. Melting-out of englacial debris and debris that flows down the glacier front has formed an isolating debris cover on the glacier surface, preventing further melting. As the glacier wasted, the stagnant, debris-covered front became separated from the glacier and formed ice-cored moraine ridges. Three moraine ridges were formed outside the present ice-front. The further glacier wastage formed a low-relief proglacial area with debris-flow deposits resting directly on glacier ice. Melting of this buried ice initiated a second phase of slides and debris flows with a flow direction independent of the present glacier surface. The rapid disintegration of the proglacial morphology is mainly caused by slides and stream erosion that uncover buried ice and often cause sediments to be transported into the main river and out of the proglacial area. Inactive stream channels are probably one of the morphological elements that have the best potential for preservation in a wasting ice-cored moraine complex and may indicate former ice-front positions. [source]