Glaciated Areas (glaciated + area)

Distribution by Scientific Domains


Selected Abstracts


Timing and style of Late Pleistocene glaciation in the Queer Shan, northern Hengduan Mountains in the eastern Tibetan Plateau,

JOURNAL OF QUATERNARY SCIENCE, Issue 6 2010
Liubing Xu
Abstract Glacial landforms and sediments provide evidence for the existence of two Late Pleistocene major glacial advances in the Queer Shan, northern Hengduan Mountains in the eastern Tibetan Plateau. In the current study, optically stimulated luminescence and electron spin resonance dating results reveal that the two glacial advances occurred during Marine Isotope Stage (MIS) 3 and the Last Glacial Maximum (LGM) in MIS 2, respectively. Geomorphic evidence shows that the glacial advance during MIS 3 was more extensive than that in MIS 2. This glacial advance is synchronous with other glaciated areas in the Himalaya and Tibet, but contrasts with global ice volumes that reached their maximum extent during the LGM. Glaciers in the Queer Shan are of the summer accumulation type and are mainly fed by precipitation from the south Asian monsoon. Palaeoclimate proxies show that during MIS 3 the south Asian monsoon strengthened and extended further north into the Tibetan Plateau to supply more precipitation as snow at high altitudes. This in turn led to positive glacier mass balances and caused glaciers to advance. However, during the LGM, despite cooler temperature than in MIS 3, the weakened south Asian monsoon and the associated reduced precipitation were not as favourable for glacier expansion as in MIS 3. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Patterns of recurrent evolution and geographic parthenogenesis within apomictic polyploid Easter daises (Townsendia hookeri)

MOLECULAR ECOLOGY, Issue 11 2006
STACEY LEE THOMPSON
Abstract Geographic patterns of parthenogenesis and the number of transitions from sexual diploidy to asexual (apomictic) autopolyploidy were examined for 40 populations of the Easter daisy, Townsendia hookeri. Analyses of pollen diameter and stainability characterized 15 sexual diploid and 25 apomictic polyploid populations from throughout the plant's western North American range. Sexual diploids were restricted to two Wisconsin refugia: Colorado/Wyoming, south of the ice sheets, and northern Yukon/Beringia. Chloroplast DNA sequencing uncovered 17 polymorphisms within the ndhF gene and trnK intron, yielding 10 haplotypes. Phylogenetic analyses indicated that five exclusively polyploid haplotypes were derived from four haplotypes that are shared among ploidies, conservatively inferring a minimum of four origins of apomictic polyploidy. Three of these apomictic polyploid origins were derived from southern sexual diploids, while the fourth origin was derived from northern sexual diploids. Analyses of regional diversity were suggestive of a formerly broad distribution for sexual diploids that has become subsequently fragmented, possibly due to the last round of glaciation. As sexual diploids were exclusively found north and south of the glacial maximum, while formerly glaciated areas were exclusively inhabited by asexual polyploids derived from both northern and southern sexual lineages, it is more likely that patterns of glaciation, as opposed to a particular latitudinal trend, played a causal role in the establishment of the observed pattern of geographic parthenogenesis in Easter daisies. [source]


Impact of ice ages on circumpolar molecular diversity: insights from an ecological key species

MOLECULAR ECOLOGY, Issue 9 2005
I. G. ALSOS
Abstract We address the impact of the ice age cycles on intraspecific cpDNA diversity, for the first time on the full circumboreal-circumarctic scale. The bird-dispersed bog bilberry (or arctic blueberry, Vaccinium uliginosum) is a key component of northern ecosystems and is here used to assess diversity in previously glaciated vs. unglaciated areas and the importance of Beringia as a refugium and source for interglacial expansion. Eighteen chloroplast DNA haplotypes were observed in and among 122 populations, grouping into three main lineages which probably diverged before, and thus were affected more or less independently by, all major glaciations. The boreal ,Amphi-Atlantic lineage' included one haplotype occurring throughout northern Europe and one occurring in eastern North America, suggesting expansion from at least two bottlenecked, glacial refugium populations. The boreal ,Beringian lineage' included seven haplotypes restricted to Beringia and the Pacific coast of USA. The ,Arctic-Alpine lineage' included nine haplotypes, one of them fully circumpolar. This lineage was unexpectedly diverse, also in previously glaciated areas, suggesting that it thrived on the vast tundras during the ice ages and recolonized deglaciated terrain over long distances. Its largest area of persistence during glaciations was probably situated in the north, stretching from Beringia and far into Eurasia, and it probably also survived the last glaciation in southern mountain ranges. Although Beringia apparently was important for the initial divergence and expansion of V. uliginosum as well as for continuous survival of both the Beringian and Arctic-Alpine lineages during all ice ages, this region played a minor role as a source for later interglacial expansions. [source]


How did an annual plant react to Pleistocene glaciations?

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2009
Postglacial history of Rhinanthus angustifolius in Europe
The impact of climate fluctuations during the Pleistocene on the geographic structure of genetic variation in plant populations is well documented, but there is a lack of studies of annual species at the European scale. The present study aimed to infer the history of the widespread European annual Rhinanthus angustifolius C. C. Gmelin (Orobanchaceae). We explored variation in chloroplast DNA (cpDNA) sequences and amplified fragment length polymorphism (AFLP) in twenty-nine populations covering the entire distribution area of the species. Five AFLP groups were identified, suggesting at least two glacial refugial areas: one area in southwestern Europe and one large eastern area in the Balkan/Caucasus. Recolonization of previously glaciated areas mainly took place from the east of Europe. Despite the difference in life-history traits, the patterns found for the annual R. angustifolius show similarities with those of perennial species in terms of genetic diversity and geographic organization of genetic variation. Although organelle markers have typically been preferred in phylogeographic studies, the cpDNA variation in R. angustifolius did not show any clear geographic structure. The absence of geographic structure in the cpDNA variation may reflect persistence of ancestral polymorphisms or hybridization and introgression with closely-related species. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98, 1,13. [source]


Northern and Southern expansions of Atlantic brown trout (Salmo trutta) populations during the Pleistocene

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2009
MARTÍ CORTEY
The phylogeography of Atlantic brown trout (Salmo trutta) was analysed using mitochondrial DNA control region complete sequences of 774 individuals from 57 locations. Additionally, the available haplotype information from 100 published populations was incorporated in the analysis. Combined information from nested clade analysis, haplotype trees, mismatch distributions, and coalescent simulations was used to characterize population groups in the Atlantic basin. A major clade involved haplotypes assigned to the Atlantic (AT) lineage, but another major clade should be considered as a distinct endemic lineage restricted to the Iberian Peninsula. The phylogeography of the Atlantic populations showed the mixed distribution of several Atlantic clades in glaciated areas of Northern Europe, whereas diverged haplotypes dominated the coastal Iberian rivers. Populations inhabiting the Atlantic rivers of southern France apparently contributed to postglacial colonization of northern basins, but also comprised the source of southern expansions during the Pleistocene. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 904,917. [source]