Gibberellic Acid (gibberellic + acid)

Distribution by Scientific Domains


Selected Abstracts


The effect of the time and mode of application of gibberellic acid and inhibitors of gibberellin biosynthesis on the dormancy of potato tubers grown from true potato seed

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 10 2007
Alexios A Alexopoulos
Abstract Gibberellic acid (GA3) and inhibitors of gibberellin biosynthesis (daminozide and chlormequat chloride) were applied to the foliage of potato plants grown from true seed (TPS) either once at two stages of plant development, 40 and 60 days after transplantation (DAT), or repeatedly at 10 day intervals starting from the same growth stages. When GA3 was applied towards the end of the vegetative cycle (either singly 60 DAT or repeatedly from the same date), it induced rapid breakage of tuber dormancy, a reduction in specific weight, a higher rate of respiration and increased weight loss during storage. Single applications of GA3 early in the vegetative cycle (40 DAT) had no effect on the weight loss and specific weight of tubers during storage, whereas repeated foliar applications of GA3 starting from the same stage resulted in the formation of tubers with a low specific weight and a high rate of weight loss during storage. However, the tubers from these treatments did not break dormancy uniformly, and, although in the early stages of storage they exhibited a high rate of respiration, this declined to the level of the control (no growth regulator applied). Although daminozide and chlormequat chloride did not affect the duration of tuber dormancy and had little or no effect on any of the other metabolic indicators studied, gibberellin is nevertheless implicated in dormancy breakage, and its application late in the growth cycle may be of practical value in cases where tubers are required for planting soon after harvest. Overall, tubers from TPS respond to plant growth regulator treatment in a similar way to those from plants grown from seed tubers. Copyright © 2007 Society of Chemical Industry [source]


Analysis of alcohols, as dimethylglycine esters, by electrospray ionization tandem mass spectrometry

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 3 2001
Dr David W. Johnson
Abstract Dimethylglycine (DMG) esters are new derivatives for the rapid, sensitive and selective analysis of primary and secondary alcohols, in complex mixtures, by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Their development was inspired by the use of the complementary dimethylaminoethyl esters for the trace, rapid analysis of fatty acids. DMG esters are simply prepared by heating a dichloromethane solution of the imidazolide of dimethylglycine, containing triethylamine, and an alcohol. DMG esters of long-chain fatty alcohols, isoprenoidal alcohols and hydroxy-acids are analysed by electrospray ionization tandem mass spectrometry with a precursor ion of m/z 104 scan. Diols, glyceryl esters, glyceryl ethers and some sterols are analysed by a neutral loss of 103 Da scan. Trimethylglycine (TMG) ester iodides, prepared by alkylation of DMG esters with methyl iodide, are more sensitive derivatives for molecules containing secondary alcohol groups, such as cholesterol and gibberellic acid. They are analysed by a precursor ion of m/z 118 scan. DMG or TMG derivatives were shown to be at least comparable and sometimes an order of magnitude more sensitive than N -methylpyridyl ether derivatives for ESI-MS/MS analysis of the different classes of alcohols. Applications of these derivatives for the diagnosis of inherited disorders and the analysis of natural products are presented. Copyright © 2001 John Wiley & Sons, Ltd. [source]


The effect of the time and mode of application of gibberellic acid and inhibitors of gibberellin biosynthesis on the dormancy of potato tubers grown from true potato seed

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 10 2007
Alexios A Alexopoulos
Abstract Gibberellic acid (GA3) and inhibitors of gibberellin biosynthesis (daminozide and chlormequat chloride) were applied to the foliage of potato plants grown from true seed (TPS) either once at two stages of plant development, 40 and 60 days after transplantation (DAT), or repeatedly at 10 day intervals starting from the same growth stages. When GA3 was applied towards the end of the vegetative cycle (either singly 60 DAT or repeatedly from the same date), it induced rapid breakage of tuber dormancy, a reduction in specific weight, a higher rate of respiration and increased weight loss during storage. Single applications of GA3 early in the vegetative cycle (40 DAT) had no effect on the weight loss and specific weight of tubers during storage, whereas repeated foliar applications of GA3 starting from the same stage resulted in the formation of tubers with a low specific weight and a high rate of weight loss during storage. However, the tubers from these treatments did not break dormancy uniformly, and, although in the early stages of storage they exhibited a high rate of respiration, this declined to the level of the control (no growth regulator applied). Although daminozide and chlormequat chloride did not affect the duration of tuber dormancy and had little or no effect on any of the other metabolic indicators studied, gibberellin is nevertheless implicated in dormancy breakage, and its application late in the growth cycle may be of practical value in cases where tubers are required for planting soon after harvest. Overall, tubers from TPS respond to plant growth regulator treatment in a similar way to those from plants grown from seed tubers. Copyright © 2007 Society of Chemical Industry [source]


Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis

NEW PHYTOLOGIST, Issue 4 2008
Elena Loreti
Summary ,,Anthocyanins are secondary metabolites, which play an important role in the physiology of plants. Both sucrose and hormones regulate anthocyanin synthesis. Here, the interplay between sucrose and plant hormones was investigated in the expression of sucrose-regulated genes coding for anthocyanin biosynthetic enzymes in Arabidopsis seedlings. ,,The expression pattern of 14 genes involved in the anthocyanin biosynthetic pathway, including two transcription factors (PAP1, PAP2), was analysed by real-time reverse transcriptase polymerase chain reaction (RT-PCR) in Arabidopsis seedlings treated with sucrose and plant hormones. ,,Sucrose-induction of the anthocyanin synthesis pathway was repressed by the addition of gibberellic acid (GA) whereas jasmonate (JA) and abscisic acid (ABA) had a synergic effect with sucrose. The gai mutant was less sensitive to GA-dependent repression of dihydroflavonol reductase. This would seem to prove that GAI signalling is involved in the crosstalk between sucrose and GA in wild-type Arabidopsis seedlings. Conversely, the inductive effect of sucrose was not strictly ABA mediated. Sucrose induction of anthocyanin genes required the COI1 gene, but not JAR1, which suggests a possible convergence of the jasmonate- and sucrose-signalling pathways. ,,The results suggest the existence of a crosstalk between the sucrose and hormone signalling pathways in the regulation of the anthocyanin biosynthetic pathway. [source]


A protein phosphatase 2A from Fagus sylvatica is regulated by GA3 and okadaic acid in seeds and related to the transition from dormancy to germination

PHYSIOLOGIA PLANTARUM, Issue 1 2006
Mary Paz González-García
Several gibberellic acid (GA3)-induced cDNA fragments encoding putative serine/threonine protein phosphatase (PP) 2A catalytic subunits were obtained by means of differential reverse transcriptase-PCR approach. The full-length clone, named FsPP2A1, isolated from a beechnut cDNA library, exhibited all the features of and homology to members of the PP2A family. By transient expression of FsPP2A1 in tobacco and Arabidopsis cells as a green fluorescent fusion protein, we have obtained evidence supporting the subcellular localization of this protein in both the cytosol and the nucleus. Analysis of FsPP2A1 expression during seed stratification shows that these transcripts increase in the presence of GA3, a treatment proved to be efficient in breaking the dormancy of Fagus sylvatica seeds, but they are almost undetectable in dormant seeds or when dormancy is maintained after treatment with either abscisic acid or the gibberellin biosynthesis inhibitor paclobutrazol. The PP inhibitor okadaic acid (OKA) has a clear effect in decreasing both seed germination and FsPP2A1 expression. Furthermore, FsPP2A1 is specifically expressed in seed tissues, not being detected in other vegetative tissues examined. These results show the regulation of this PP by GA3 and OKA in these seeds. Its relationship with the processes taking place during the transition from dormancy to germination is also discussed. [source]


Spatio-temporal changes in cell division, endoreduplication and expression of cell cycle-related genes in pollinated and plant growth substances-treated ovaries of cucumber

PLANT BIOLOGY, Issue 1 2010
F. Q. Fu
Abstract We investigated the temporal and spatial changes in cell division, endoreduplication and expression of cell cycle-related genes in developing cucumber fruits at 0,20 days after anthesis (DAA). Cell division was intense at 0,4 DAA and then decreased until to 8 DAA. Meanwhile, endoreduplication started at 4 DAA and increased gradually to 20 DAA, accompanied by an increase in fruit weight. Cell division was mainly observed in the exocarp, while endoreduplication occurred mostly in the endocarp and pulp. Among the six cell cycle-related genes examined, two mitotic cyclin genes (CycA and CycB) and CDKB had the highest transcript levels within 2 DAA, while transcripts of two CycD3 genes and CDKA peaked at 4 DAA and 20 DAA, respectively. Naphthaleneacetic acid (NAA), N -(2-chloro-4-pyridyl)- N'-phenylurea (CPPU) and 24-epibrassinolide (EBR) all induced parthenocarpic growth as well as active cell division, and enhanced transcripts of cell cycle-related genes. In comparison, gibberellic acid (GA3) had little effect on the induction of parthenocarpy and transcripts of cell cycle-related genes. These results provide evidence for the important roles of cell division and endoreduplication during cucumber fruit development, and suggest the essential roles of cell cycle-related genes and plant growth substances in fruit development. [source]


Strategy differences of two potato species in response to nitrogen starvation.

PLANT CELL & ENVIRONMENT, Issue 7 2000
Do plants have a genetic switch for nitrogen signalling?
ABSTRACT Survival responses to nitrogen starvation are well known in micro-organisms but little studied in plants. To construct a framework for study of the plant responses, we investigated the strategy differences of tubers from two closely related potato species. Solanum tuberosum conserves tuber nitrogen by inhibiting shoot growth, but S. phureja mobilizes tuber nitrogen to grow shoots, flowers and seeds. Genetic analysis of progeny from S. phureja,haploid S. tuberosum crosses uncovered segregation of a single dominant gene for the S. tuberosum inhibition strategy. Within S. tuberosum, haploid progeny closely resembled their tetraploid parents, suggesting strong genetic control of the inhibition. Growth of the inhibited shoots was proportional to sub-optimal levels of added nitrate, and was triggered by exogenous gibberellic acid (GA3). These observations support the notion that potato plants can closely tie shoot growth to ambient nitrogen levels , probably by a root,shoot nitrogen signal transduction pathway, and that this can be overridden by emergency mobilization of nitrogen reserves, perhaps by GA signalling from the tuber. Furthermore, genes for such developmental switches can be identified by classical genetic analysis of closely related species, such as S. tuberosum and S. phureja, that exhibit opposite survival strategies. [source]


Mitochondrial respiratory pathways modulate nitrate sensing and nitrogen-dependent regulation of plant architecture in Nicotiana sylvestris

THE PLANT JOURNAL, Issue 6 2008
Till K. Pellny
Summary Mitochondrial electron transport pathways exert effects on carbon,nitrogen (C/N) relationships. To examine whether mitochondria,N interactions also influence plant growth and development, we explored the responses of roots and shoots to external N supply in wild-type (WT) Nicotiana sylvestris and the cytoplasmic male sterile II (CMSII) mutant, which has a N-rich phenotype. Root architecture in N. sylvestris seedlings showed classic responses to nitrate and sucrose availability. In contrast, CMSII showed an altered ,nitrate-sensing' phenotype with decreased sensitivity to C and N metabolites. The WT growth phenotype was restored in CMSII seedling roots by high nitrate plus sugars and in shoots by gibberellic acid (GA). Genome-wide cDNA-amplified fragment length polymorphism (AFLP) analysis of leaves from mature plants revealed that only a small subset of transcripts was altered in CMSII. Tissue abscisic acid content was similar in CMSII and WT roots and shoots, and growth responses to zeatin were comparable. However, the abundance of key transcripts associated with GA synthesis was modified both by the availability of N and by the CMSII mutation. The CMSII mutant maintained a much higher shoot/root ratio at low N than WT, whereas no difference was observed at high N. Shoot/root ratios were strikingly correlated with root amines/nitrate ratios, values of <1 being characteristic of high N status. We propose a model in which the amine/nitrate ratio interacts with GA signalling and respiratory pathways to regulate the partitioning of biomass between shoots and roots. [source]


In vitro micro-tuber initiation and dormancy in yam

ANNALS OF APPLIED BIOLOGY, Issue 2 2010
E.I. Hamadina
Dormancy is a mechanism that regulates the timing of sprouting (germination) of affected plant parts as well as ensures that the food quality of edible parts is maintained in storage until the following growing season. In yam, however, little is known about the control of tuber initiation or tuber dormancy. The objective of this study was to determine the effects of selected plant growth regulators (PGRs) on tuber initiation and dormancy, using an in vitro system. In two replicated experiments, 2-chloroethylphosphonic acid (ethephon, an ethylene source), abscisic acid (ABA) and gibberellin (GA3) , and their inhibitors silver nitrate, fluridone and 2-chloroethyl-trimethylammonium chloride, respectively , were added at two concentrations to the culture medium prior to explant culture. Dates of micro-tuber initiation and sprouting (end of dormancy) and tuber number were recorded. In the control (no PGR) in Experiment 1, micro-tubers were initiated at the base of the stem after 176 days and sprouted 235 days later, that is 411 days after culturing. Most PGR treatments had only small effects (±30 days) on the duration of dormancy and the time of micro-tuber initiation. However, in GA3 micro-tuber initiation occurred after 76 days, about 100 days earlier than in the control, whereas fluridone affected the position of micro-tubers and duration of dormancy. With fluridone treatments, tubers were found at the base of the stem (normal position) and on lower and upper nodes. Lower node tubers sprouted within 225 days of culturing compared with about 420 days after culturing at other nodal positions and in other PGR treatments. These data suggest an important role for ABA and gibberellic acid in yam micro-tuber initiation and the induction of dormancy. [source]


Seed moisture content affects afterripening and smoke responsiveness in three sympatric Australian native species from fire-prone environments

AUSTRAL ECOLOGY, Issue 8 2009
SHANE R. TURNER
Abstract Germination of freshly collected seeds of three sympatric herbaceous species native to fire-prone environments in south-western Australia was significantly improved through the application of novel combinations of dry heat, gibberellic acid, smoke water and dry afterripening. For fresh seeds, combinations of dry heat, gibberellic acid and/or smoke water resulted in >80% germination in Austrostipa elegantissima (Poaceae) and Stylidium affine (Stylidaceae) seeds and >60% germination in Conostylis candicans (Haemodoraceae) seeds, compared with <10% germination of control seeds. For fresh seeds, two broad germination patterns were observed in response to smoke water: nil , low germination for both control and smoke water-treated seeds (A. elegantissima and S. affine); and a significant smoke response (35%) compared with control seeds (1%) (C. candicans). During afterripening, high germination for A. elegantissima seeds was achieved following 3 months storage of seeds at equilibrium relative humidities of 23,75%, but seeds stored at 5,13% equilibrium relative humidities took 6,36 months to achieve similar levels of germination. Germination of C. candicans seeds also increased after 3 months storage, to >60% at each equilibrium relative humidity and further increases over time were slight. For S. affine seeds >60% germination was achieved only after 36 months storage at 50% equilibrium relative humidity. Seeds from all three species were smoke-responsive at some point, but the interaction/effects of afterripening on the smoke response varied significantly between species. This study highlights an apparent effect of seed dormancy status on response to smoke and a surprisingly high level of ecological variation in pre-germination requirements (cues) for these co-occurring species that may relate to variation(s) in microsite selection forces operating on the soil seed bank of the different species. [source]


Site, vine state and responsiveness to the application of growth regulator fruitsetting agents

AUSTRALIAN JOURNAL OF GRAPE AND WINE RESEARCH, Issue 1 2009
J.A. CONSIDINE
Abstract Background and Aims:, This study was initiated to investigate local problems in obtaining consistent fruit-setting responses to a recommended treatment combination of gibberellic acid (GA3) and (2-chloroethyl)-trimethyl ammonium chloride (CCC), with vineyard managers returning to more traditional methods of either cincturing or applying 4-chlorophenoxy acetic acid (4-CPA). Methods and Results:, Five vineyard study sites located in the Chittering,Bindoon region of Western Australia were characterised by multivariate analysis using measures of vegetative and reproductive biomass. Two experiments were carried out in the vineyard to compare responses to combinations of GA3 and CCC. 4-CPA was used as an industry control. Bunch number was used as a novel covariate to adjust responses to individual vine and site factors. Berry volume increased in all vines and sites treated with GA3, irrespective of timing, but dry matter yield increased only in the youngest vineyards. The only site to show a significant response to CCC application was that with the highest vegetative biomass. Conclusions:, We conclude that site and management factors rather than growth regulator type, concentration or timing determined yield responsiveness (sugar production). Significance of the Study:, This study demonstrates a strong physiological and environmental effect on response to growth regulator application, reinforcing the importance of developing site-specific management practices. It shows how multivariate techniques may be used to characterise and compare vineyards, and also, how analysis of covariance using a new parameter, bunch number, may be used to enhance statistical of analysis of field experiments. [source]