Giant Planets (giant + planet)

Distribution by Scientific Domains


Selected Abstracts


A stability catalogue of the habitable zones in extrasolar planetary systems

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007
Zs. Sándor
ABSTRACT In the near future, space missions will be launched (e.g. COROT, KEPLER) to detect Earth-like extrasolar planets. The orbital elements of these (still hypothetic) planets will contain some uncertainties that can only be eliminated by careful dynamical investigations of the hosting planetary systems. The proportion of extrasolar planetary systems with one known giant planet is high (,90 per cent). Therefore, as a first step we have investigated the possible existence of terrestrial planets in these systems. In this paper, the development of a stability catalogue of the habitable zones of exoplanetary systems is reported. This catalogue is formed by a series of stability maps, which can help to establish where Earth-like planets could exist in extrasolar planetary systems having one giant planet. After a description of the dynamical model and the numerical methods, details of the stability maps are discussed. An application of the stability catalogue to 15 known exoplanetary systems is also shown, and a characterization of the stability properties of their habitable zones is given. [source]


Nearby stars of the Galactic disk and halo.

ASTRONOMISCHE NACHRICHTEN, Issue 1 2004

Abstract High-resolution spectroscopic observations of about 150 nearby stars or star systems are presented and discussed. The study of these and another 100 objects of the previous papers of this series implies that the Galaxy became reality 13 or 14 Gyr ago with the implementation of a massive, rotationally-supported population of thick-disk stars. The very high star formation rate in that phase gave rise to a rapid metal enrichment and an expulsion of gas in supernovae-driven Galactic winds, but was followed by a star formation gap for no less than three billion years at the Sun's galactocentric distance. In a second phase, then, the thin disk , our "familiar Milky Way" , came on stage. Nowadays it traces the bright side of the Galaxy, but it is also embedded in a huge coffin of dead thick-disk stars that account for a large amount of baryonic dark matter. As opposed to this, cold-dark-matter-dominated cosmologies that suggest a more gradual hierarchical buildup through mergers of minor structures, though popular, are a poor description for the Milky Way Galaxy , and by inference many other spirals as well , if, as the sample implies, the fossil records of its long-lived stars do not stick to this paradigm. Apart from this general picture that emerges with reference to the entire sample stars, a good deal of the present work is however also concerned with detailed discussions of many individual objects. Among the most interesting we mention the blue straggler or merger candidates HD 165401 and HD 137763/HD 137778, the likely accretion of a giant planet or brown dwarf on 59 Vir in its recent history, and HD 63433 that proves to be a young solar analog at , , 200 Myr. Likewise, the secondary to HR 4867, formerly suspected non-single from the Hipparcos astrometry, is directly detectable in the highresolution spectroscopic tracings, whereas the visual binary , Cet is instead at least triple, and presumably even quadruple. With respect to the nearby young stars a complete account of the UrsaMajor Association is presented, and we provide as well plain evidence for another, the "Hercules-Lyra Association", the likely existence of which was only realized in recent years. On account of its rotation, chemistry, and age we do confirm that the Sun is very typical among its G-type neighbors; as to its kinematics, it appears however not unlikely that the Sun's known low peculiar space velocity could indeed be the cause for the weak paleontological record of mass extinctions and major impact events on our parent planet during the most recent Galactic plane passage of the solar system. Although the significance of this correlation certainly remains a matter of debate for years to come, we point in this context to the principal importance of the thick disk for a complete census with respect to the local surface and volume densities. Other important effects that can be ascribed to this dark stellar population comprise (i) the observed plateau in the shape of the luminosity function of the local FGK stars, (ii) a small though systematic effect on the basic solar motion, (iii) a reassessment of the term "asymmetrical drift velocity" for the remainder (i.e. the thin disk) of the stellar objects, (iv) its ability to account for the bulk of the recently discovered high-velocity blue white dwarfs, (v) its major contribution to the Sun's ,220 km s,1 rotational velocity around the Galactic center, and (vi) the significant flattening that it imposes on the Milky Way's rotation curve. Finally we note a high multiplicity fraction in the small but volume-complete local sample of stars of this ancient population. This in turn is highly suggestive for a star formation scenario wherein the few existing single stellar objects might only arise from either late mergers or the dynamical ejection of former triple or higher level star systems. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Review of the population of impactors and the impact cratering rate in the inner solar system

METEORITICS & PLANETARY SCIENCE, Issue 11 2007
Patrick Michel
The best witness of these events is the lunar surface, which kept the memory of the impacts that it underwent during the last 3.8 Gyr. In this paper, we review the recent studies at the origin of a reliable model of the impactor population in the inner solar system, namely the near-Earth object (NEO) population. Then we briefly expose the scaling laws used to relate a crater diameter to body size. The model of the NEO population and its impact frequency on terrestrial planets is consistent with the crater distribution on the lunar surface when appropriate scaling laws are used. Concerning the early phases of our solar system's history, a scenario has recently been proposed that explains the origin of the Late Heavy Bombardment (LHB) and some other properties of our solar system. In this scenario, the four giant planets had initially circular orbits, were much closer to each other, and were surrounded by a massive disk of planetesimals. Dynamical interactions with this disk destabilized the planetary system after 500,600 Myr. Consequently, a large portion of the planetesimal disk, as well as 95% of the Main Belt asteroids, were sent into the inner solar system, causing the LHB while the planets reached their current orbits. Our knowledge of solar system evolution has thus improved in the last decade despite our still-poor understanding of the complex cratering process. [source]


Thermal effects of circumplanetary disc formation around proto-gas giant planets

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2009
M. N. Machida
ABSTRACT The formation of a circumplanetary disc and accretion of angular momentum on to a protoplanetary system are investigated using three-dimensional hydrodynamical simulations. The local region around a protoplanet in a protoplanetary disc is considered with sufficient spatial resolution: the region from outside the Hill sphere to the Jovian radius is covered by the nested-grid method. To investigate the thermal effects of the circumplanetary disc, various equations of state are adopted. Large thermal energy around the protoplanet slightly changes the structure of the circumplanetary disc. Compared with a model adopting an isothermal equation of state, in a model with an adiabatic equation of state, the protoplanet's gas envelope extends farther, and a slightly thick disc appears near the protoplanet. However, different equations of state do not affect the acquisition process of angular momentum for the protoplanetary system. Thus, the specific angular momentum acquired by the system is fitted as a function only of the protoplanet's mass. A large fraction of the total angular momentum contributes to the formation of the circumplanetary disc. The disc forms only in a compact region in very close proximity to the protoplanet. Adapting the results to the Solar system, the proto-Jupiter and Saturn have compact discs in the region of r < 21rJup(r < 0.028 rH,Jup) and r < 66rSat(r < 0.061rH,Sat), respectively, where rJup(rH,Jup) and rSat(rH,Sat) are the Jovian and Saturnian (Hill) radius, respectively. The surface density has a peak in these regions due to the balance between centrifugal force and gravity of the protoplanet. The size of these discs corresponds well to the outermost orbit of regular satellites around Jupiter and Saturn. Regular satellites may form in such compact discs around proto-gas giant planets. [source]


A new perspective on the irregular satellites of Saturn , I. Dynamical and collisional history

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2008
D. Turrini
ABSTRACT The dynamical features of the irregular satellites of the giant planets argue against an in situ formation and are strongly suggestive of a capture origin. Since the last detailed investigations of their dynamics, the total number of satellites has doubled, increasing from 50 to 109, and almost tripled in the case of Saturn system. We have performed a new dynamical exploration of Saturn system to test whether the larger sample of bodies could improve our understanding of which dynamical features are primordial and which are the outcome of the secular evolution of the system. We have performed detailed N -body simulations using the best orbital data available and analysed the frequencies of motion to search for resonances and other possible perturbing effects. We took advantage of the hierarchical Jacobian symplectic algorithm to include in the dynamical model of the system also the gravitational effects of the two outermost massive satellites, Titan and Iapetus. Our results suggest that Saturn's irregular satellites have been significantly altered and shaped by the gravitational perturbations of Jupiter, Titan, Iapetus and the Sun and by the collisional sweeping effect of Phoebe. In particular, the effects on the dynamical evolution of the system of the two massive satellites appear to be non-negligible. Jupiter perturbs the satellites through its direct gravitational pull and, indirectly, via the effects of the Great Inequality, i.e. its near-resonance with Saturn. Finally, by using the hierarchical clustering method we found hints to the existence of collisional families and compared them with the available observational data. [source]


Stable satellites around extrasolar giant planets

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2006
R. C. Domingos
ABSTRACT In this work, we study the stability of hypothetical satellites of extrasolar planets. Through numerical simulations of the restricted elliptic three-body problem we found the borders of the stable regions around the secondary body. From the empirical results, we derived analytical expressions of the critical semimajor axis beyond which the satellites would not remain stable. The expressions are given as a function of the eccentricities of the planet, eP, and of the satellite, esat. In the case of prograde satellites, the critical semimajor axis, in the units of Hill's radius, is given by aE, 0.4895 (1.0000 , 1.0305eP, 0.2738esat). In the case of retrograde satellites, it is given by aE, 0.9309 (1.0000 , 1.0764eP, 0.9812esat). We also computed the satellite stability region (aE) for a set of extrasolar planets. The results indicate that extrasolar planets in the habitable zone could harbour the Earth-like satellites. [source]


On the mechanisms leading to orphan meteoroid streams

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2006
J. Vaubaillon
ABSTRACT We analyse several mechanisms capable of creating orphan meteoroid streams (OMSs) for which a parent has not been identified. OMSs have been observed as meteor showers since the XIXth century and by the IRAS satellite in the 1980s. We find that the process of close encounters with giant planets (particularly Jupiter) is the most efficient mechanism to create them: only a limited section of the stream is perturbed and follows the parent body on its new orbit, while the majority of the meteoroids remain in their pre-encounter orbit or in an intermediate state, breaking the link with their parent body. Cometary non-gravitational forces can also contribute to the process since they cause the comet to drift away from its stream. However, they are not sufficient by themselves to produce an OMS. Resonances can either split or confine a stream over a long time (>1000 yr). Some meteoroid streams may look like OMSs since their parent comet is dormant or not observable (e.g. long period). Even if new techniques succeed in linking minor objects to meteoroid streams, OMSs will still exist simply because cometary nuclei are subject to complete disruption leading to their disappearance. [source]


The effect of condensates on the characterization of transiting planet atmospheres with transmission spectroscopy

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2005
Jonathan J. Fortney
ABSTRACT Through a simple physical argument we show that the slant optical depth through the atmosphere of a ,hot Jupiter' planet is ,35,90 times greater than the normal optical depth. This not unexpected result has direct consequences for the method of transmission spectroscopy for characterizing the atmospheres of transiting giant planets. The atmospheres of these planets likely contain minor condensates and hazes, which at normal viewing geometry have negligible optical depth, but at slant viewing geometry have appreciable optical depth that can obscure absorption features of gaseous atmospheric species. We identify several possible condensates. We predict that this is a general masking mechanism for all planets, not just for HD 209458b, and will lead to weaker than expected or undetected absorption features. Constraints on an atmosphere from transmission spectroscopy are not the same as constraints on an atmosphere at normal viewing geometry. [source]


Simulations of the population of Centaurs , II.

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2004
Individual objects
ABSTRACT Detailed orbit integrations of clones of five Centaurs , namely, 1996 AR20, 2060 Chiron, 1995 SN55, 2000 FZ53 and 2002 FY36 , for durations of ,3 Myr are presented. One of our Centaur sample starts with perihelion initially under the control of Jupiter (1996 AR20), two start under the control of Saturn (Chiron and 1995 SN55) and one each starts under the control of Uranus (2000 FZ53) and Neptune (2002 FY36), respectively. A variety of interesting pathways are illustrated with detailed examples including: capture into the Jovian Trojans, repeated bursts of short-period comet behaviour, capture into mean-motion resonances with the giant planets and into Kozai resonances, as well as traversals of the entire Solar system. For each of the Centaurs, we provide statistics on the numbers (i) ejected, (ii) showing short-period comet behaviour and (iii) becoming Earth- and Mars-crossing. For example, Chiron has over 60 per cent of its clones becoming short-period objects, while 1995 SN55 has over 35 per cent. Clones of these two Centaurs typically make numerous close approaches to Jupiter. At the other extreme, 2000 FZ53 has ,2 per cent of its clones becoming short-period objects. In our simulations, typically 20 per cent of the clones which become short-period comets subsequently evolve into Earth-crossers. [source]


Prospects for spectroscopic reflected-light planet searches

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2003
Christopher Leigh
ABSTRACT High-resolution spectroscopic searches for the starlight reflected from close-in extrasolar giant planets have the capability of determining the optical albedo spectra and scattering properties of these objects. When combined with radial velocity measurements they also yield the true mass of the planet. To date, only two such planets have been targeted for reflected-light signals, yielding upper limits on the optical albedos of the planets. Here we examine the prospects for future searches of this kind. We present Monte Carlo estimates of prior probability distributions for the orbital velocity amplitudes and planet/star flux ratios of six bright stars known to harbour giant planets in orbits with periods of less than 5 d. Using these estimates, we assess the viability of these targets for future reflected-light searches using 4- and 8-m class telescopes. [source]


A method for the direct determination of the surface gravities of transiting extrasolar planets

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY: LETTERS (ELECTRONIC), Issue 1 2007
John Southworth
ABSTRACT We show that the surface gravity of a transiting extrasolar planet can be calculated from only the spectroscopic orbit of its parent star and the analysis of its transit light curve. This does not require additional constraints, such as are often inferred from theoretical stellar models or model atmospheres. The surface gravity of the planet can therefore be measured precisely and from only directly observable quantities. We outline the method and apply it to the case of the first known transiting extrasolar planet, HD 209458b. We find a surface gravity of gp= 9.28 ± 0.15 m s,2, which is an order of magnitude more precise than the best available measurements of its mass, radius and density. This confirms that the planet has a much lower surface gravity than that predicted by published theoretical models of gas giant planets. We apply our method to all 14 known transiting extrasolar planets and find a significant correlation between surface gravity and orbital period, which is related to the known correlation between mass and period. This correlation may be the underlying effect as surface gravity is a fundamental parameter in the evaporation of planetary atmospheres. [source]