Home About us Contact | |||
Genetic Linkage Studies (genetic + linkage_studies)
Selected AbstractsEpistatic Interactions between Genomic Regions Containing the COL1A1 Gene and Genes Regulating Osteoclast Differentiation may Influence Femoral Neck Bone Mineral DensityANNALS OF HUMAN GENETICS, Issue 2 2007Tie-Lin Yang Summary Bone mineral density (BMD) is a primary risk indicator of osteoporotic fractures, which are largely determined by the actions of multiple genes. Genetic linkage studies have seldom explored epistatic interaction of genes for BMD. To evaluate potential genetic interactions for BMD at the femoral neck (FN) we conducted a variance component linkage analysis, to test epistatic effects between the genomic region containing the COL1A1 (collagen type I alpha 1) gene and the genomic regions containing genes regulating osteoclast differentiation (e.g. TNFRSF11A encoding RANK (receptor for activation of nuclear factor kappa B), TNFSF11 encoding RANKL (RANK ligand), IL1A (interleukin-1 alpha), IL6 (interleukin-6), etc) in 3998 Caucasian subjects from 434 pedigrees. We detected significant epistatic interactions between the regions containing COL1A1 with IL6 (p = 0.004) and TNFRSF1B encoding TNFR2 (tumor necrosis factor receptor 2) (p = 0.003), respectively. In summary, we identified the epistatic effects on BMD between regions containing several prominent candidate genes. Our results suggested that the IL6 and TNFRSF1B genes may regulate FN BMD variation through interactions with the COL1A1 gene, which should be substantiated by other, or population-based, association studies. [source] Alcohol and Colorectal Cancer: The Role of Alcohol Dehydrogenase 1C PolymorphismALCOHOLISM, Issue 3 2009Nils Homann Background:, Chronic alcohol consumption is a risk factor for colorectal cancer. Animal experiments as well as genetic linkage studies in Japanese individuals with inactive acetaldehyde dehydrogenase leading to elevated acetaldehyde concentrations following ethanol ingestion support the hypothesis that acetaldehyde may be responsible for this carcinogenic effect of alcohol. In Caucasians, a polymorphism of alcohol dehydrogenase 1C (ADH1C) exists resulting in different acetaldehyde concentrations following ethanol oxidation. Methods:, To evaluate whether the association between alcohol consumption and colorectal tumor development is modified by ADH1C polymorphism, we recruited 173 individuals with colorectal tumors diagnosed by colonoscopy and 788 control individuals without colorectal tumors. Genotyping was performed using genomic DNA extracted from whole blood followed by polymerase chain reaction. Results:, Genotype ADH1C*1/1 was more frequent in patients with alcohol-associated colorectal neoplasia compared to patients without cancers in the multivariate model controlling for age, gender, and alcohol intake (odds ratio = 1.674, 95% confidence interval = 1.110,2.524, 2-sided p from Wald test = 0.0139). In addition, the joint test of the genetic effect and interaction between ADH1C genotype and alcohol intake (2-sided p = 0.0007) indicated that the difference in ADH1C*1 polymorphisms between controls and colorectal neoplasia is strongly influenced by the alcohol consumption and that only individuals drinking more than 30 g ethanol per day with the genotype ADH1C*1/1 had an increased risk for colorectal tumors. Conclusions:, These data identify ADH1C homozygosity as a genetic risk marker for colorectal tumors in individuals consuming more than 30 g alcohol per day and emphasize the role of acetaldehyde as a carcinogenic agent in alcohol-related colorectal carcinogenesis. [source] Mutational analysis of SPANX genes in families with X-Linked prostate cancerTHE PROSTATE, Issue 8 2007Natalay Kouprina Abstract BACKGROUND Previous genetic linkage studies identified a locus for susceptibility to prostate cancer called HPCX at Xq27. The candidate region contains two clusters of SPANX genes. The first cluster called SPANX-A/D includes SPANX - A1, SPANX-A2, SPANX-B, SPANX-C, and SPANX-D; the second cluster called SPANX-N includes SPANX-N1, SPANX-N2, SPANX-N3, and SPANX-N4. The SPANX genes encode cancer-testis (CT) specific antigens. Previous studies identified SPANX-B and SPANX-D variants produced by gene conversion events, none of which are associated with X-linked prostate cancer. METHODS In this study we applied transformation-associated recombination cloning (TAR) in yeast to analyze sequence variations in SPANX - A1, SPANX - A2, and SPANX - C genes that are resided within large chromosomal duplications. A SPANX-N1/N4 cluster was analyzed by a routine PCR analysis. RESULTS None of the sequence variations in the coding regions of these genes is associated with susceptibility to prostate cancer. CONCLUSIONS Therefore, genetic variation in the SPANX genes is not the actual target variants explaining HPCX. However, it is possible that they play a modifying role in susceptibility to prostate cancer through complex recombinational interaction. Prostate 67: 820,828, 2007. © 2007 Wiley-Liss, Inc. [source] Defects of Intergenomic Communication: Where Do We Stand?BRAIN PATHOLOGY, Issue 3 2000Michio Hirano M.D. An expanding number of autosomal diseases has been associated with mitochondrial DNA (mtDNA) depletion and multiple deletions. These disorders have been classified as defects of intergenomic communication because mutations of the nuclear DNA are thought to disrupt the normal cross-talk that regulates the integrity and quantity of mtDNA. In 1989, autosomal dominant progressive external ophthalmoplegia with multiple deletions of mitochondrial DNA was the first of these disorders to be identified. Two years later, mtDNA depletion syndrome was initially reported in infants with severe hepatopathy or myopathy. The causes of these diseases are still unclear, but genetic linkage studies have identified three chromosomal loci for AD-PEO. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), an autosomal recessive disorder associated with both mtDNA depletion and multiple deletions, is now known to be due to loss-of-function mutations in the gene encoding thymidine phosphorylase. Increased plasma thymidine levels in MNGIE patients suggest that imbalanced nucleoside and nucleotide pools in mitochondria may lead to impaired replication of mtDNA. Future research will certainly lead to the identification of additional genetic causes of intergenomic communication defects and will likely provide insight into the normal "dialogue" between the two genomes. [source] Trace amine-associated receptors and their ligandsBRITISH JOURNAL OF PHARMACOLOGY, Issue 8 2006R Zucchi Classical biogenic amines (adrenaline, noradrenaline, dopamine, serotonin and histamine) interact with specific families of G protein-coupled receptors (GPCRs). The term ,trace amines' is used when referring to p- tyramine, ,-phenylethylamine, tryptamine and octopamine, compounds that are present in mammalian tissues at very low (nanomolar) concentrations. The pharmacological effects of trace amines are usually attributed to their interference with the aminergic pathways, but in 2001 a new gene was identified, that codes for a GPCR responding to p- tyramine and ,-phenylethylamine but not to classical biogenic amines. Several closely related genes were subsequently identified and designated as the trace amine-associated receptors (TAARs). Pharmacological investigations in vitro show that many TAAR subtypes may not respond to p- tyramine, ,-phenylethylamine, tryptamine or octopamine, suggesting the existence of additional endogenous ligands. A novel endogenous thyroid hormone derivative, 3-iodothyronamine, has been found to interact with TAAR1 and possibly other TAAR subtypes. In vivo, micromolar concentrations of 3-iodothyronamine determine functional effects which are opposite to those produced on a longer time scale by thyroid hormones, including reduction in body temperature and decrease in cardiac contractility. Expression of all TAAR subtypes except TAAR1 has been reported in mouse olfactory epithelium, and several volatile amines were shown to interact with specific TAAR subtypes. In addition, there is evidence that TAAR1 is targeted by amphetamines and other psychotropic agents, while genetic linkage studies show a significant association between the TAAR gene family locus and susceptibility to schizophrenia or bipolar affective disorder. British Journal of Pharmacology (2006) 149, 967,978. doi:10.1038/sj.bjp.0706948 [source] |