Home About us Contact | |||
Genetic Knockout (genetic + knockout)
Selected AbstractsDorothy Hodgkin Lecture 2008 Gastric inhibitory polypeptide (GIP) revisited: a new therapeutic target for obesity,diabetes?DIABETIC MEDICINE, Issue 7 2008P. R. Flatt Abstract There is increasing realization that gastric inhibitory polypeptide (GIP) has actions outside of the pancreas and gastrointestinal tract. Most significant is the presence of functional GIP receptors on adipocytes and the appreciation that GIP, secreted strongly in response to fat ingestion, plays a role in the translation of excessive amounts of dietary fat into adipocyte tissue stores. Such effects open up the possibility of exploiting GIP receptor antagonism for the treatment of obesity and insulin resistance. This is borne out by studies in high-fat-fed mice or ob/ob mice with either genetic knockout of GIP receptor or chemical ablation of GIP action using the GIP receptor antagonist, (Pro3)GIP. By causing preferential oxidation of fat, blockade of GIP signalling clears triglyceride deposits from liver and muscle, thereby respectively restoring mechanisms for suppression of hepatic glucose output and cellular glucose uptake. Further studies are needed to determine the applicability of this research to human obesity,diabetes. However, proof of concept is provided by emerging evidence that rapid cure of diabetes in grossly obese subjects undergoing Roux-en-Y bypass surgery is mediated in part by surgical bypass of GIP-secreting K-cells in the upper small intestine. [source] Hypoalgesia in mice lacking GABA transporter subtype 1JOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2008Yin Fang Xu Abstract ,-Aminobutyric acid (GABA) transporters play a key role in the regulation of GABA neurotransmission. We reported previously that overexpression of the GABA transporter subtype 1 (GAT1), the major form of the GABA transporter in the CNS, led to hyperalgesia in mice. In the present study, nociceptive responses of GAT1-knockout mice (GAT1,/,) were compared with those of heterozygous (GAT+/,) and wild-type (GAT+/+) mice by four conventional pain models (tail-immersion test, hot-plate test, acetic acid,induced abdominal constriction test, and formalin test). In addition, the analgesic effects of two GAT1-selective inhibitors, NO-711 and tiagabine, were examined in all three genotypes using the same four models. Our data demonstrated that GAT1 deficiency because of genetic knockout or acute blockade by selective inhibitors leads to hypoalgesia in mice. These results confirmed the crucial role of GAT1 in the regulation of nociceptive threshold and suggested that GAT1 inhibitors have the potential for clinical use in pain therapy. © 2007 Wiley-Liss, Inc. [source] Chemical Approaches to Controlling Intracellular Protein DegradationCHEMBIOCHEM, Issue 1 2005John S. Schneekloth Jr. Inactive. Recent advances have yielded many ways to study proteins by means of inactivation. Traditional methods of genetic knockout are complimented by newer techniques, including RNAi and small molecules that induce proteolysis (see scheme). Although seemingly in competition, these techniques each offer solutions to specific problems in proteomic analysis. [source] Characterization of HMW-PBPs from the rod-shaped actinomycete Corynebacterium glutamicum: peptidoglycan synthesis in cells lacking actin-like cytoskeletal structuresMOLECULAR MICROBIOLOGY, Issue 3 2007Noelia Valbuena Summary Analysis of the complete genome sequence of Corynebacterium glutamicum indicated that, in addition to ftsI, there are eight proteins with sequence motifs that are strongly conserved in penicillin binding proteins (PBPs): four genes that code for high-molecular-weight (HMW)-PBPs (PBP1a, PBP1b, PBP2a and PBP2b), two genes encoding low-molecular-weight PBPs (PBP4 and PBP4b) and two probable ,-lactamases (PBP5 and PBP6). Here, the function of the four HMW-PBPs in C. glutamicum was investigated using a combination of genetic knockouts, enhanced green fluorescent protein 2 (EGFP2) fusions and penicillin staining of membrane preparations. The four HMW-PBPs were expressed in a growing culture of C. glutamicum, but none of four pbp genes was individually essential for the growth of the bacterium, and only the simultaneous disruption of both pbp1b and pbp2b was lethal. The fused EGFP2,PBP proteins were functional in vivo, which allowed correct determination of their cellular localization. EGFP2 fusions to PBP1a, PBP1b and PBP2b localized at the poles and at the septum, whereas EGFP2,PBP2a was predominantly found at the septum. Cefsulodin treatment specifically delocalized PBP1a and PBP1b (class A HMW-PBPs), whereas mecillinam caused the specific delocalization of PBP2b and PBP2a (class B HMW-PBPs). The results provide new insight into the mechanisms involved in the synthesis of the cell wall in this bacterial species, which lacks a known actin-like cytoskeletal structure. [source] |