Genetic Interactions (genetic + interaction)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Genetic interaction of CTLA-4 with HLA-DR15 in multiple sclerosis patients,

ANNALS OF NEUROLOGY, Issue 1 2003
Mehdi Alizadeh PhD
Multiple sclerosis is a chronic inflammatory disease of the central nervous system with a genetic component. Until now, the more consistent association with the disease is found with the major histocompatibility complex, especially HLA-DRB1*1501-DQB1*0602 haplotype. In this report, we demonstrate the interaction of Cytotoxic T Lymphocyte-associated antigen 4 (CTLA-4 [CD152]) gene with DRB1*15 haplotype in multiple sclerosis genetic susceptibility. Our data were obtained from two European independent family-based studies including 610 multiple sclerosis family trios. Ann Neurol 2003;54:119,122 [source]


Mis3 with a conserved RNA binding motif is essential for ribosome biogenesis and implicated in the start of cell growth and S phase checkpoint

GENES TO CELLS, Issue 7 2000
Hiroshi Kondoh
Background In normal somatic cell cycle, growth and cell cycle are properly coupled. Although CDK (cyclin-dependent kinase) activity is known to be essential for cell cycle control, the mechanism to ensure the coupling has been little understood. Results We here show that fission yeast Mis3, a novel evolutionarily highly conserved protein with the RNA-interacting KH motif, is essential for ribosome RNA processing, and implicated in initiating the cell growth. Growth arrest of mis3-224, a temperature sensitive mutant at the restrictive temperature, coincides with the early G2 block in the complete medium or the G1/S block in the release from nitrogen starvation, reflecting coupling of cell growth and division. Genetic interactions indicated that Mis3 shares functions with cell cycle regulators and RNA processing proteins, and is under the control of Dsk1 kinase and PP1 phosphatase. Mis3 is needed for the formation of 18S ribosome RNA, and may hence direct the level of proteins required for the coupling. One such candidate is Mik1 kinase. mis3-224 is sensitive to hydroxyurea, and the level of Mik1 protein increases during replication checkpoint in a manner dependent upon the presence of Mis3 and Cds1. Conclusions Mis3 is essential for ribosome biogenesis, supports S phase checkpoint, and is needed for the coupling between growth and cell cycle. Whether Mis3 interacts solely with ribosomal precursor RNA remains to be determined. [source]


Genetic interactions between marine finfish species in European aquaculture and wild conspecifics

JOURNAL OF APPLIED ICHTHYOLOGY, Issue 4 2001
Youngson
The principal species of marine aquaculture in Europe are Atlantic salmon (Salmo salar), sea bass (Dicentrarchus labrax) and sea bream (Sparus auratus). For Atlantic salmon and sea bass, a substantial part of total genetic variation is partitioned at the geographical population level. In the case of sea bream, gene flow across the Azores/Mediterranean scale appears to be extensive and population structuring is not detected. For Atlantic salmon and sea bass, natural population structure is at risk from genetic interaction with escaped aquaculture conspecifics. The locally adaptive features of populations are at risk from interbreeding with non-local aquaculture fish. Wild populations, generally, are at risk from interactions with aquaculture fish that have been subject to artificial selection or domestication. Atlantic salmon is the main European aquaculture species and its population genetics and ecology have been well-studied. A general case regarding genetic interactions can be based on the information available for salmon and extended to cover other species, in the appropriate context. A generalized flow chart for interactions is presented. Salmon escape from aquaculture at all life stages, and some survive to breed among wild salmon. Reproductive fitness in the escaped fish is lower than in native, wild fish because of behavioural deficiencies at spawning. However, as the number of salmon in aquaculture greatly exceeds the number of wild fish, even small fractional rates of escape may result in the local presence of large numbers, and high frequencies, of escaped fish. At present, policy and legislation in relation to minimizing genetic interactions between wild and aquaculture fish is best developed for Atlantic salmon, through the recommendations of the Oslo Agreement developed by the North Atlantic Salmon Conservation Organization and subsequent agreements on their implementation. In future, the potential use of genetically modified fish in aquaculture will make additional policy development necessary. Improved containment is recommended as the key to minimizing the numbers and therefore the effects of escaped fish. Emergency recovery procedures are recommended as a back-up measure in the case of containment failure. Reproductive sterility is recommended as a future key to eliminating the genetic potential of escaped fish. The maintenance of robust populations of wild fish is recommended as a key to minimizing the effects of escaped fish on wild populations. [source]


Rga5p is a specific Rho1p GTPase-activating protein that regulates cell integrity in Schizosaccharomyces pombe

MOLECULAR MICROBIOLOGY, Issue 2 2003
Teresa M. Calonge
Summary Schizosaccharomyces pombe Rho1p regulates (1,3),- d -glucan synthesis and is required for cell integrity maintenance and actin cytoskeleton organization, but nothing is known about the regulation of this protein. At least nine different S. pombe genes code for proteins predicted to act as Rho GTPase-activating proteins (GAPs). The results shown in this paper demonstrate that the protein encoded by the gene named rga5+ is a GAP specific for Rho1p. rga5+ overexpression is lethal and causes morphological alterations similar to those reported for Rho1p inactivation. rga5+ deletion is not lethal and causes a mild general increase in cell wall biosynthesis and morphological alterations when cells are grown at 37°C. Upon mild overexpression, Rga5p localizes to growth areas and possesses both in vivo and in vitro GAP activity specific for Rho1p. Overexpression of rho1+ in rga5, cells is lethal, with a morphological phenotype resembling that of the overexpression of the constitutively active allele rho1G15V. In addition (1,3),- d -glucan synthase activity, regulated by Rho1p, is increased in rga5, cells and decreased in rga5 -overexpressing cells. Moreover, the increase in (1,3),- d -glucan synthase activity caused by rho1+ overexpression is considerably higher in rga5, than in wild-type cells. Genetic interactions suggest that Rga5p is also important for the regulation of the other known Rho1p effectors, Pck1p and Pck2p. [source]


Conservation ecology of Primula sieboldii: Synthesis of information toward the prediction of the genetic/demographic fate of a population

PLANT SPECIES BIOLOGY, Issue 1 2005
IZUMI WASHITANI
Abstract In an age of deepening biodiversity crisis, plant species biological studies integrating ecological and genetic approaches, especially exhaustive studies with a model plant species, are urgently needed for both assessing the present status and implementing effective conservation measures, as a comprehensive understanding of demographic/genetic interactions involved in the vicious cycle of plant population extinction is a prerequisite for any precise prediction regarding plant conservation. In this article, we summarize the major contributions to conservation ecological studies on a heterostylous clonal herb Primula sieboldii, focusing on gene flow and reproductive success, which are dependent on the life-history traits of the species and biological interactions with its effective pollinators, long-tongued bumblebees. [source]


Generation and characterization of a novel neural crest marker allele, Inka1-LacZ, reveals a role for Inka1 in mouse neural tube closure

DEVELOPMENTAL DYNAMICS, Issue 4 2010
Bethany S. Reid
Abstract Previous studies identified Inka1 as a gene regulated by AP-2, in the neural crest required for craniofacial morphogenesis in fish and frog. Here, we extend the analysis of Inka1 function and regulation to the mouse by generating a LacZ knock-in allele. Inka1-LacZ allele expression occurs in the cephalic mesenchyme, heart, and paraxial mesoderm prior to E8.5. Subsequently, expression is observed in the migratory neural crest cells and their derivatives. Consistent with expression of Inka1 in tissues of the developing head during neurulation, a low percentage of Inka1,/, mice show exencephaly while the remainder are viable and fertile. Further studies indicate that AP-2, is not required for Inka1 expression in the mouse, and suggest that there is no significant genetic interaction between these two factors during embryogenesis. Together, these data demonstrate that while the expression domain of Inka1 is conserved among vertebrates, its function and regulation are not. Developmental Dynamics 239:1188,1196, 2010. © 2010 Wiley-Liss, Inc. [source]


Type I collagen is a genetic modifier of matrix metalloproteinase 2 in murine skeletal development

DEVELOPMENTAL DYNAMICS, Issue 6 2007
Mikala Egeblad
Abstract Recessive inactivating mutations in human matrix metalloproteinase 2 (MMP2, gelatinase A) are associated with syndromes that include abnormal facial appearance, short stature, and severe bone loss. Mmp2,/, mice have only mild aspects of these abnormalities, suggesting that MMP2 function is redundant during skeletal development in the mouse. Here, we report that Mmp2,/, mice with additional mutations that render type I collagen resistant to collagenase-mediated cleavage to TCA and TCB fragments (Col1a1r/r mice) have severe developmental defects resembling those observed in MMP2 -null humans. Composite Mmp2,/,;Col1a1r/r mice were born in expected Mendelian ratios but were half the size of wild-type, Mmp2,/,, and Col1a1r/r mice and failed to thrive. Furthermore, composite Mmp2,/,;Col1a1r/r animals had very abnormal craniofacial features with shorter snouts, bulging skulls, incompletely developed calvarial bones and unclosed cranial sutures. In addition, trabecular bone mass was reduced concomitant with increased numbers of bone-resorbing osteoclasts and osteopenia. In vitro, MMP2 had a unique ability among the collagenolytic MMPs to degrade mutant collagen, offering a possible explanation for the genetic interaction between Mmp2 and Col1a1r. Thus, because mutations in the type I collagen gene alter the phenotype of mice with null mutations in Mmp2, we conclude that type I collagen is an important modifier gene for Mmp2. Developmental Dynamics 236:1683,1693, 2007. © 2007 Wiley-Liss, Inc. [source]


Interaction between a chromosome 10 RET enhancer and chromosome 21 in the Down syndrome,Hirschsprung disease association,

HUMAN MUTATION, Issue 5 2009
Stacey Arnold
Abstract Individuals with Down syndrome (DS) display a 40-fold greater risk of Hirschsprung disease (HSCR) than the general population of newborns implicating chromosome 21 in HSCR etiology. Here we demonstrate that the RET enhancer polymorphism RET+9.7 (rs2435357:C>T) at chromosome 10q11.2 is associated with HSCR in DS individuals both by transmission disequilibrium (P=0.0015) and case,control (P=0.0115) analysis of matched cases. Interestingly, the RET+9.7 T allele frequency is significantly different between individuals with DS alone (0.26±0.04), HSCR alone (0.61±0.04), and those with HSCR and DS (0.41±0.04), demonstrating an association and interaction between RET and chromosome 21 gene dosage. This is the first report of a genetic interaction between a common functional variant (rs2435357) and a not infrequent copy number error (chromosome 21 dosage) in two human developmental disorders. Hum Mutat 30:1,5, 2009. © 2009 Wiley-Liss, Inc. [source]


Genetic interactions between marine finfish species in European aquaculture and wild conspecifics

JOURNAL OF APPLIED ICHTHYOLOGY, Issue 4 2001
Youngson
The principal species of marine aquaculture in Europe are Atlantic salmon (Salmo salar), sea bass (Dicentrarchus labrax) and sea bream (Sparus auratus). For Atlantic salmon and sea bass, a substantial part of total genetic variation is partitioned at the geographical population level. In the case of sea bream, gene flow across the Azores/Mediterranean scale appears to be extensive and population structuring is not detected. For Atlantic salmon and sea bass, natural population structure is at risk from genetic interaction with escaped aquaculture conspecifics. The locally adaptive features of populations are at risk from interbreeding with non-local aquaculture fish. Wild populations, generally, are at risk from interactions with aquaculture fish that have been subject to artificial selection or domestication. Atlantic salmon is the main European aquaculture species and its population genetics and ecology have been well-studied. A general case regarding genetic interactions can be based on the information available for salmon and extended to cover other species, in the appropriate context. A generalized flow chart for interactions is presented. Salmon escape from aquaculture at all life stages, and some survive to breed among wild salmon. Reproductive fitness in the escaped fish is lower than in native, wild fish because of behavioural deficiencies at spawning. However, as the number of salmon in aquaculture greatly exceeds the number of wild fish, even small fractional rates of escape may result in the local presence of large numbers, and high frequencies, of escaped fish. At present, policy and legislation in relation to minimizing genetic interactions between wild and aquaculture fish is best developed for Atlantic salmon, through the recommendations of the Oslo Agreement developed by the North Atlantic Salmon Conservation Organization and subsequent agreements on their implementation. In future, the potential use of genetically modified fish in aquaculture will make additional policy development necessary. Improved containment is recommended as the key to minimizing the numbers and therefore the effects of escaped fish. Emergency recovery procedures are recommended as a back-up measure in the case of containment failure. Reproductive sterility is recommended as a future key to eliminating the genetic potential of escaped fish. The maintenance of robust populations of wild fish is recommended as a key to minimizing the effects of escaped fish on wild populations. [source]


Escape of farmed tilapiines into the wild and entry of wild forms in fishponds, and the possible interactions between wild and farmed tilapiines from a sample of smallholder farms in Central Uganda

AFRICAN JOURNAL OF ECOLOGY, Issue 4 2009
Matthew Tenywa Mwanja
Abstract Seven smallholder fishponds in central Uganda were studied between 2000 and 2001 to investigate the interaction of farmed tilapiines with their wild conspecifics. Emphasis was on the features that facilitate escape of fish and/or entry of fish into the farms and interactions between the farmed and the wild. These included number of species, source of seed, connection between pond and natural watercourses, purpose of the farm, destination of cultured fish and interaction between farmed and wild fish. Fishponds had no screens against entry of wild fish into the farm or escape of farmed fish into the wild and occurred within wetlands close to natural watercourses. Ponds stocked with one fish species were found to have multispecies with some individuals that were apparently intermediate morphs between the species. Fry produced within the growout fishponds was shared with other farmers within and outside the watersheds. This study showed that smallholder farms with little or no control of escape or entry of fish out and into the fishponds, and little or no management present circumstances that facilitate continued movement of tilapiines within and across watersheds in Ugandan waters. The study also indicated possible genetic interaction between farmed and their wild conspecifics through interactions within fishponds. Résumé Sept viviers appartenant à de petits propriétaires ont étéétudiés entre 2000 et 2001 pour rechercher l'interaction entre les tilapiinés d'élevage et ceux qui vivent dans la nature. On insistait sur les caractéristiques qui facilitent la fuite et/ou l'entrée des poissons dans les fermes et les interactions entre les poissons d'élevage et les poissons sauvages. On a étudié le nombre d'espèces, la source de la progéniture, les connections entre les bassins et les cours d'eau naturels, la raison d'être des fermes, la destination des poissons d'élevage et l'interaction entre les poissons d'élevage et les poissons sauvages. Les réservoirs n'avaient pas de filtres pour empêcher l'entrée des poissons sauvages ou la fuite des poissons d'élevage et ils se trouvaient dans des zones humides proches de cours d'eau naturels. Les bassins qui avaient été stockés avec une seule espèce de poissons se sont avérés contenir plusieurs espèces, et certains individus semblaient avoir une morphologie intermédiaire entre différentes espèces. Le fretin produit dans les bassins de croissance était partagé avec d'autres éleveurs dans ou en dehors des bassins versants. Cette étude a montré que les petits élevages qui exercent peu de contrôles sur les entrées ou les sorties de poissons dans et hors des bassins et une gestion nulle ou très réduite, offrent des conditions qui facilitent le déplacement continu des tilapiinés au sein des bassins de rivières et entre eux, dans les eaux ougandaises. Cette étude indique aussi qu'il est possible qu'il existe des interactions génétiques entre les poissons d'élevage et les poissons sauvages de même espèce, au niveau des bassins d'élevage. [source]


A molecular analysis of hybridization between native westslope cutthroat trout and introduced rainbow trout in southeastern British Columbia, Canada

JOURNAL OF FISH BIOLOGY, Issue 2001
E. Rubidge
Restriction site variation in the Ikaros gene intron was used to assess the incidence of westslope cutthroat trout (Oncorhynchus clarki lewisi), rainbow trout (O. mykiss) and interspecific hybrids at 11 localities among eight streams tributary to the upper Kootenay River system in south-eastern British Columbia, Canada. Out of 356 fish assayed by this technique, hybrids (n=16) were found at seven of the 11 sites across five different streams. Rainbow trout (n=6) were found at two of the 11 sites. Analysis of hybrids with a second genetic marker (heat shock 71 intron) indicated that most represented either backcrosses to both westslope cutthroat and rainbow trout, or post F1 hybrids. Mitochondrial DNA analysis indicated that hybrid matings occur between male rainbow trout and female westslope cutthroat trout and vice versa. Comparison of present hybridization in five tributaries relative to an allozyme-based analysis in the mid-1980s, that documented hybrids in only a single tributary of seven that were common to the two studies, suggests that hybridization and introgression has increased in upper Kootenay River tributaries. The present analysis is a conservative estimate of genetic interaction between the species because introgression was not tested in the majority of samples. Identification of genetically pure westslope cutthroat trout populations, and why they might be resistant to introgression from rainbow trout, are crucial conservation priorities for this unique subspecies of cutthroat trout. [source]


Tumor suppressor gene Co-operativity in compound Patched1 and suppressor of fused heterozygous mutant mice

MOLECULAR CARCINOGENESIS, Issue 5 2009
Jessica Svärd
Abstract Dysregulation of the Hedgehog signaling pathway is central to the development of certain tumor types, including medulloblastoma and basal cell carcinoma (BCC). Patched1 (Ptch1) and Suppressor of fused (Sufu) are two essential negative regulators of the pathway with tumor suppressor activity. Ptch1+/, mice are predisposed to developing medulloblastoma and rhabdomyosarcoma, while Sufu+/, mice develop a skin phenotype characterized by basaloid epidermal proliferations. Here, we have studied tumor development in Sufu+/,Ptch1+/, mice to determine the effect of compound heterozygosity on the onset, incidence, and spectrum of tumors. We found significantly more (2.3-fold) basaloid proliferations in Sufu+/,Ptch1+/, compared to Sufu+/, female, but not male, mice. For medulloblastoma, the cumulative 1-yr incidence was 1.5-fold higher in Sufu+/,Ptch1+/, compared to Ptch1+/, female mice but this strong trend was not statistically significant. Together this suggests a weak genetic interaction of the two tumor suppressor genes. We noted a few rhabdomyosarcomas and pancreatic cysts in the Sufu+/,Ptch1+/, mice, but the numbers were not significantly different from the single heterozygous mice. Hydrocephalus developed in ,20% of the Ptch1+/, and Sufu+/,Ptch1+/, but not in Sufu+/, mice. Interestingly, most of the medulloblastomas from the Sufu+/,Ptch1+/, mice had lost expression of the remaining Ptch1 wild-type allele but not the Sufu wild-type allele. On the contrary, Sufu as well as Gli1 and Gli2 expression was upregulated in the medulloblastomas compared to adult cerebellum in Ptch1+/, and Sufu+/,Ptch1+/, mice. This suggests that Sufu expression may be regulated by Hedgehog pathway activity and could constitute another negative feedback loop in the pathway. © 2008 Wiley-Liss, Inc. [source]


Inheritance of reduced plant height in the sunflower line Dw 89

PLANT BREEDING, Issue 5 2003
L. Velasco
Abstract The objective of the present research was to study the inheritance of reduced plant height in the sunflower line Dw 89. Plants of the cytoplasmic male sterile version of this line, cmsDw 89 (mean plant height of 47.4 cm) were crossed with plants of the restorer line RHA 271 (mean of 120.9 cm). F1 plants averaged 120.4 cm, which indicated dominance of standard over reduced plant height. F2 plants followed a segregation pattern of 1 : 15 (reduced : normal height), suggesting that reduced plant height in Dw 89 is controlled by alleles at two loci, designated Dw1 and Dw2. Class assignment in the F2 was confirmed through the evaluation of the F3 generation. Backcrosses to Dw 89 segregated with 1 : 3 (reduced : normal height) ratios, which confirmed the digenic inheritance of the trait. The evaluation of plant height distributions in F3 families suggested possible genetic interaction between the Dw1 and Dw2 loci. [source]


Life-span phenotypes of elav and Rbp9 in Drosophila suggest functional cooperation of the two elav-family protein genes

ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 4 2010
Gakuta Toba
Abstract The ELAV family of RNA-binding proteins is involved in various aspects of the post-transcriptional regulation of gene expression, from alternative splicing to translation. The members of this family have been shown to interact with each other and have been suggested to function as homo- and/or hetero-multimers. However, the functional interactions among them have not been demonstrated in vivo. In this study, we examined the genetic interaction between elav and Rbp9, two of the three genes encoding ELAV-family proteins in Drosophila. Mutants of both elav and Rbp9 showed shorter life spans than the control, with elav showing a shorter life span than Rbp9. The survival curve of elav-Rbp9 double-mutant flies was indistinguishable from that of elav single-mutant flies, suggesting that both mutations affect longevity through the same pathway. Considering the fact that both genes are co-expressed in adult neurons, we hypothesize that ELAV and Rbp9 cooperate to maintain the functional integrity of the adult nervous system. © 2010 Wiley Periodicals, Inc. [source]


Chromosomal fragile sites FRA3B and FRA16D show correlated expression and association with failure of apoptosis in lymphocytes from patients with thyroid cancer

GENES, CHROMOSOMES AND CANCER, Issue 5 2006
Isabella Sbrana
It has been suggested that common fragile sites (cFSs) are related to cancer development. This appears to be the case for FRA3B and FRA16D, localized in two tumor-suppressor genes (FHIT and WWOX, respectively) that are altered by deletions or loss of heterozygosity (LOH) in many cancers. The features responsible for fragility have not yet been identified. Furthermore, it is still unclear whether instability at these regions causes chance deletions and loss of function of the associated genes, or whether the gene function itself is related to the appearance of fragility. In this study, we analyzed cFS expression in lymphocytes from 20 healthy or thyroid cancer,affected subjects exposed to radiation after the Chernobyl accident. The same cells were examined for apoptosis, a principal function of both the FHIT and WWOX genes. Exceptionally elevated chromosome fragility was observed, particularly in cancer patients, affecting FRA3B, FRA16D, and a cluster of less highly expressed cFSs; levels of chromosome fragility were found to be correlated among these cFSs. Interestingly, most expressed cFSs were sites of LOH reported for thyroid tumors; moreover, cells with the highest fragility also had a reduced ability to undergo apoptosis. These findings reveal previously unknown genetic interactions affecting fragile loci, suggestive of a shared function inside mitotic cells. Attenuation of checkpoint control and apoptosis resistance seem to be the cell phenotypes associated with unusual chromosome fragility. We propose that breakage at specific cFS could derive from early epigenetic events at loci involved in radiation carcinogenesis. This article contains Supplementary Material available at http://www.interscience.wiley.com/jpages/1045-2257/suppmat. © 2006 Wiley-Liss, Inc. [source]


Genetic interactions between marine finfish species in European aquaculture and wild conspecifics

JOURNAL OF APPLIED ICHTHYOLOGY, Issue 4 2001
Youngson
The principal species of marine aquaculture in Europe are Atlantic salmon (Salmo salar), sea bass (Dicentrarchus labrax) and sea bream (Sparus auratus). For Atlantic salmon and sea bass, a substantial part of total genetic variation is partitioned at the geographical population level. In the case of sea bream, gene flow across the Azores/Mediterranean scale appears to be extensive and population structuring is not detected. For Atlantic salmon and sea bass, natural population structure is at risk from genetic interaction with escaped aquaculture conspecifics. The locally adaptive features of populations are at risk from interbreeding with non-local aquaculture fish. Wild populations, generally, are at risk from interactions with aquaculture fish that have been subject to artificial selection or domestication. Atlantic salmon is the main European aquaculture species and its population genetics and ecology have been well-studied. A general case regarding genetic interactions can be based on the information available for salmon and extended to cover other species, in the appropriate context. A generalized flow chart for interactions is presented. Salmon escape from aquaculture at all life stages, and some survive to breed among wild salmon. Reproductive fitness in the escaped fish is lower than in native, wild fish because of behavioural deficiencies at spawning. However, as the number of salmon in aquaculture greatly exceeds the number of wild fish, even small fractional rates of escape may result in the local presence of large numbers, and high frequencies, of escaped fish. At present, policy and legislation in relation to minimizing genetic interactions between wild and aquaculture fish is best developed for Atlantic salmon, through the recommendations of the Oslo Agreement developed by the North Atlantic Salmon Conservation Organization and subsequent agreements on their implementation. In future, the potential use of genetically modified fish in aquaculture will make additional policy development necessary. Improved containment is recommended as the key to minimizing the numbers and therefore the effects of escaped fish. Emergency recovery procedures are recommended as a back-up measure in the case of containment failure. Reproductive sterility is recommended as a future key to eliminating the genetic potential of escaped fish. The maintenance of robust populations of wild fish is recommended as a key to minimizing the effects of escaped fish on wild populations. [source]


HRAS1 and LASS1 with APOE are associated with human longevity and healthy aging

AGING CELL, Issue 5 2010
S. Michal Jazwinski
Summary The search for longevity-determining genes in human has largely neglected the operation of genetic interactions. We have identified a novel combination of common variants of three genes that has a marked association with human lifespan and healthy aging. Subjects were recruited and stratified according to their genetically inferred ethnic affiliation to account for population structure. Haplotype analysis was performed in three candidate genes, and the haplotype combinations were tested for association with exceptional longevity. An HRAS1 haplotype enhanced the effect of an APOE haplotype on exceptional survival, and a LASS1 haplotype further augmented its magnitude. These results were replicated in a second population. A profile of healthy aging was developed using a deficit accumulation index, which showed that this combination of gene variants is associated with healthy aging. The variation in LASS1 is functional, causing enhanced expression of the gene, and it contributes to healthy aging and greater survival in the tenth decade of life. Thus, rare gene variants need not be invoked to explain complex traits such as aging; instead rare congruence of common gene variants readily fulfills this role. The interaction between the three genes described here suggests new models for cellular and molecular mechanisms underlying exceptional survival and healthy aging that involve lipotoxicity. [source]


Common genetic variants associated with plasma fibrin D-dimer concentration in older European- and African-American adults

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 4 2008
L. A. LANGE
Summary.,Background and Objectives:,D-dimer is a hemostasis marker that reflects ongoing fibrin formation and degradation. There is significant inter-individual and inter-population variability in D-dimer concentration, but whether genetic factors underlie these differences is largely unknown. We hypothesized that common coagulation gene variants contribute to differences in circulating D-dimer concentration. Methods:,The setting was European-American (EA; n = 1858) and African-American (AA; n = 327) unrelated older adults from the Cardiovascular Health Study (CHS), in which we genotyped SNPs in 42 genes related to blood coagulation and fibrinolysis. Results:,Several fibrinogen gene polymorphisms, including the Thr312Ala A, chain variant and the FGG-10034 C/T variant, were associated with ,20% higher plasma D-dimer levels in EA (false discovery rate < 5% for covariate-adjusted model). There was also some evidence that a Pro41Leu variant of the PLAU gene encoding urinary plasminogen activator and non-coding polymorphism of the plasminogen activator inhibitor type 1 gene (SERPINE1) were associated with higher plasma D-dimer in EA. There were no significant associations between the studied coagulation or fibrinolysis gene SNPs and plasma D-dimer levels in the smaller AA sample. However, each standard deviation increase in European ancestry assessed by ancestry-informative gene markers was associated with ,10% lower mean D-dimer levels in AA. Conclusions:,Together, common coagulation/fibrinolysis gene SNPs explained only ,2% of the variance in plasma D-dimer levels in EA. These findings suggest that the association of D-dimer with risk of vascular outcomes may be mediated largely by environmental factors, other genes, and/or genetic interactions. [source]


INVITED REVIEW: Plant self-incompatibility in natural populations: a critical assessment of recent theoretical and empirical advances

MOLECULAR ECOLOGY, Issue 10 2004
VINCENT CASTRIC
Abstract Self-incompatibility systems in plants are genetic systems that prevent self-fertilization in hermaphrodites through recognition and rejection of pollen expressing the same allelic specificity as that expressed in the pistils. The evolutionary properties of these self-recognition systems have been revealed through a fascinating interplay between empirical advances and theoretical developments. In 1939, Wright suggested that the main evolutionary force driving the genetic and molecular properties of these systems was strong negative frequency-dependent selection acting on pollination success. The empirical observation of high allelic diversity at the self-incompatibility locus in several species, followed by the discovery of very high molecular divergence among alleles in all plant families where the locus has been identified, supported Wright's initial theoretical predictions as well as many of its later developments. In the last decade, however, advances in the molecular characterization of the incompatibility reaction and in the analysis of allelic frequencies and allelic divergence from natural populations have stimulated new theoretical investigations that challenged some important assumptions of Wright's model of gametophytic self-incompatibility. We here review some of these recent empirical and theoretical advances that investigated: (i) the hypothesis that S -alleles are selectively equivalent, and the evolutionary consequences of genetic interactions between alleles; (ii) the occurrence of frequency-dependent selection in female fertility; (iii) the evolutionary genetics of self-incompatibility systems in subdivided populations; (iv) the evolutionary implications of the self-incompatibility locus's genetic architecture; and (v) of its interactions with the genomic environment. [source]


Rga2 is a Rho2 GAP that regulates morphogenesis and cell integrity in S. pombe

MOLECULAR MICROBIOLOGY, Issue 4 2008
Ma Antonia Villar-Tajadura
Summary Schizosaccharomyces pombe Rho2 GTPase regulates ,-D-glucan synthesis and acts upstream of Pck2 to activate the MAP kinase pathway for cell integrity. However, little is known about its regulation. Here we describe Rga2 as a Rho2 GTPase-activating protein (GAP) that regulates cell morphology. rga2+ gene is not essential for growth but its deletion causes longer and thinner cells whereas rga2+ overexpression causes shorter and broader cells. rga2+ overexpression also causes abnormal accumulation of Calcofluor-stained material and cell lysis, suggesting that it also participates in cell wall integrity. Rga2 localizes to growth tips and septum region. The N-terminal region of the protein is required for its correct localization whereas the PH domain is necessary exclusively for Rga2 localization to the division area. Also, Rga2 localization depends on polarity markers and on actin polymerization. Rga2 interacts with Rho2 and possesses in vitro and in vivo GAP activity for this GTPase. Accordingly, rga2, cells contain more ,-D-glucan and therefore partially suppress the thermosensitivity of mok1,664 cells, which have a defective ,-D-glucan synthase. Additionally, genetic interactions and biochemical analysis suggest that Rga2 regulates Rho2,Pck2 interaction and might participate in the regulation of the MAPK cell integrity pathway. [source]


Allele-specific genetic interactions between Mitf and Kit affect melanocyte development

PIGMENT CELL & MELANOMA RESEARCH, Issue 3 2010
Bin Wen
Summary The tyrosine kinase receptor KIT and the transcription factor MITF, each required for melanocyte development, have been shown to interact functionally both in vitro and in vivo. In vitro, KIT signaling leads to MITF phosphorylation, affecting MITF activity and stability. In vivo, the presence of the Mitf,Mi-wh allele exacerbates the spotting phenotype associated with heterozygosity for Kit mutations. Here, we show that among a series of other Mitf alleles, only the recessive Mitf,mi-bws mimics the effect of Mitf,Mi-wh on Kit. Intriguingly, Mitf,mi-bws is characterized by a splice defect that leads to a reduction of RNAs containing MITF exon 2B which encodes serine-73, a serine phosphorylated upon KIT signaling. Nevertheless, other Mitf alleles that generally affect Mitf RNA levels, or carry a serine-73-to-alanine mutation that specifically reduces exon 2B-containing RNAs, do not show similar interactions with Kit in vivo. We conclude that the recessive Mitf,mi-bws is a complex allele that can display a semi-dominant effect when present in a Kit -sensitized background. We suggest that human disease variability may equally be due to complex, allele-specific interactions between different genes. [source]


The AT-hook-containing proteins SOB3/AHL29 and ESC/AHL27 are negative modulators of hypocotyl growth in Arabidopsis

THE PLANT JOURNAL, Issue 1 2008
Ian H. Street
Summary SOB3, which encodes a plant-specific AT-hook motif containing protein, was identified from an activation-tagging screen for suppressors of the long-hypocotyl phenotype of a weak phyB allele, phyB-4. sob3-D (suppressor of phyB-4#3 dominant) overexpressing seedlings have shorter hypocotyls, and as adults develop larger flowers and leaves, and are delayed in senescence compared with wild-type plants. At the nucleotide level, SOB3 is closely related to ESCAROLA (ESC), which was identified in an independent activation-tagging screen. ESC overexpression also suppresses the phyB-4 long-hypocotyl phenotype, and confers an adult morphology similar to sob3-D, suggesting similar functions. Analysis of transgenic plants harboring SOB3:SOB3-GUS or ESC:ESC-GUS translational fusions, driven by their endogenous promoter regions, showed GUS activity in the hypocotyl and vasculature tissue in light- and dark-grown seedlings. A loss-of-function SOB3 allele (sob3-4) was generated through an ethyl methanesulfonate intragenic suppressor screen of sob3-D phyB-4 plants, and this allele was combined with a predicted null allele, disrupting ESC (esc-8), to examine potential genetic interactions. The sob3-4 esc-8 double mutant had a long hypocotyl in multiple fluence rates of continuous white, far-red, red and blue light. sob3-4 esc-8 phyB-9 and sob3-4 esc-8 cry-103 triple mutants also had longer hypocotyls than photoreceptor single mutants. In contrast, the sob3-4 esc-8 phyA-211 triple mutant was the same length as phyA-211 single mutants. Taken together, these data indicate that SOB3 and ESC act redundantly to modulate hypocotyl growth inhibition in response to light. [source]


Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family

THE PLANT JOURNAL, Issue 6 2006
Michele E. Auldridge
Summary Arabidopsis thaliana has nine genes that constitute a family of putative carotenoid cleavage dioxygenases (CCDs). While five members of the family are believed to be involved in synthesis of the phytohormone abscisic acid, the functions of the other four enzymes are less clear. Recently two of the enzymes, CCD7/MAX3 and CCD8/MAX4, have been implicated in synthesis of a novel apocarotenoid hormone that controls lateral shoot growth. Here, we report on the molecular and genetic interactions between CCD1, CCD7/MAX3 and CCD8/MAX4. CCD1 distinguishes itself from other reported CCDs as being the only member not targeted to the plastid. Unlike ccd7/max3 and ccd8/max4, both characterized as having highly branched phenotypes, ccd1 loss-of-function mutants are indistinguishable from wild-type plants. Thus, even though CCD1 has similar enzymatic activity to CCD7/MAX3, it does not have a role in synthesis of the lateral shoot growth inhibitor. Rather, it may have a role in synthesis of apocarotenoid flavor and aroma volatiles, especially in maturing seeds where loss of function leads to significantly higher carotenoid levels. [source]


Interactions Between HERC2, OCA2 and MC1R May Influence Human Pigmentation Phenotype

ANNALS OF HUMAN GENETICS, Issue 2 2009
Wojciech Branicki
Summary Human pigmentation is a polygenic trait which may be shaped by different kinds of gene,gene interactions. Recent studies have revealed that interactive effects between HERC2 and OCA2 may be responsible for blue eye colour determination in humans. Here we performed a population association study, examining important polymorphisms within the HERC2 and OCA2 genes. Furthermore, pooling these results with genotyping data for MC1R, ASIP and SLC45A2 obtained for the same population sample we also analysed potential genetic interactions affecting variation in eye, hair and skin colour. Our results confirmed the association of HERC2 rs12913832 with eye colour and showed that this SNP is also significantly associated with skin and hair colouration. It is also concluded that OCA2 rs1800407 is independently associated with eye colour. Finally, using various approaches we were able to show that there is an interaction between MC1R and HERC2 in determination of skin and hair colour in the studied population sample. [source]


Epistatic Interactions between Genomic Regions Containing the COL1A1 Gene and Genes Regulating Osteoclast Differentiation may Influence Femoral Neck Bone Mineral Density

ANNALS OF HUMAN GENETICS, Issue 2 2007
Tie-Lin Yang
Summary Bone mineral density (BMD) is a primary risk indicator of osteoporotic fractures, which are largely determined by the actions of multiple genes. Genetic linkage studies have seldom explored epistatic interaction of genes for BMD. To evaluate potential genetic interactions for BMD at the femoral neck (FN) we conducted a variance component linkage analysis, to test epistatic effects between the genomic region containing the COL1A1 (collagen type I alpha 1) gene and the genomic regions containing genes regulating osteoclast differentiation (e.g. TNFRSF11A encoding RANK (receptor for activation of nuclear factor kappa B), TNFSF11 encoding RANKL (RANK ligand), IL1A (interleukin-1 alpha), IL6 (interleukin-6), etc) in 3998 Caucasian subjects from 434 pedigrees. We detected significant epistatic interactions between the regions containing COL1A1 with IL6 (p = 0.004) and TNFRSF1B encoding TNFR2 (tumor necrosis factor receptor 2) (p = 0.003), respectively. In summary, we identified the epistatic effects on BMD between regions containing several prominent candidate genes. Our results suggested that the IL6 and TNFRSF1B genes may regulate FN BMD variation through interactions with the COL1A1 gene, which should be substantiated by other, or population-based, association studies. [source]


To what extent did Neanderthals and modern humans interact?

BIOLOGICAL REVIEWS, Issue 2 2009
Kristian J. Herrera
ABSTRACT Neanderthals represent an extinct hominid lineage that existed in Europe and Asia for nearly 400,000 years. They thrived in these regions for much of this time, but declined in numbers and went extinct around 30,000 years ago. Interestingly, their disappearance occurred subsequent to the arrival of modern humans into these areas, which has prompted some to argue that Neanderthals were displaced by better suited and more adaptable modern humans. Still others have postulated that Neanderthals were assimilated into the gene pool of modern humans by admixture. Until relatively recently, conclusions about the relationships between Neanderthals and contemporary humans were based solely upon evidence left behind in the fossil and archaeological records. However, in the last decade, we have witnessed the introduction of metagenomic analyses, which have provided novel tools with which to study the levels of genetic interactions between this fascinating Homo lineage and modern humans. Were Neanderthals replaced by contemporary humans through dramatic extinction resulting from competition and/or hostility or through admixture? Were Neanderthals and modern humans two independent, genetically unique species or were they a single species, capable of producing fertile offspring? Here, we review the current anthropological, archaeological and genetic data, which shed some light on these questions and provide insight into the exact nature of the relationships between these two groups of humans. [source]


Expression of Pla2g2a prevents carcinogenesis in Muc2 -deficient mice

CANCER SCIENCE, Issue 11 2008
R. J. A. Fijneman
Goblet cell depletion and down-regulation of MUC2 expression are observed in a significant percentage of human non-mucinous colorectal adenocarcinomas. Direct evidence for the role of MUC2 in gastrointestinal tumor formation was demonstrated by a knockout of Muc2 in mice that resulted in the development of adenocarcinomas in the small and large intestine. The secretory phospholipase Pla2g2a is a protein that confers resistance to ApcMin/+ -induced intestinal tumorigenesis. Like Muc2, in the large intestine Pla2g2a is exclusively expressed by the goblet cells and Pla2g2a's tumor resistance is also strongest in the large intestine. Possible genetic interactions between Muc2 and Pla2g2a were examined by creating C57BL/6- Muc2,/,Pla2g2a transgenic mice. Expression of a Pla2g2a transgene reduced tumorigenesis in the large intestine by 90% in male Muc2,/, mice and by nearly 100% in female Muc2,/, mice. Expression of Pla2g2a also inhibited tumor progression. Microarray gene expression studies revealed Pla2g2a target genes that modulate intestinal energy metabolism, differentiation, inflammation, immune responses and proliferation. Overall, results of the present study demonstrate an Apc-independent role for Pla2g2a in tumor resistance and indicate that Pla2g2a plays an important role, along with Muc2, in protection of the intestinal mucosa. (Cancer Sci 2008; 99: 2113,2119) [source]


Specific APO E genotypes in combination with the ACE D/D or MTHFR 677TT mutation yield an independent genetic risk of leukoaraiosis

ACTA NEUROLOGICA SCANDINAVICA, Issue 3 2004
Z. Szolnoki
Objective , Ischaemic demyelination of the white matter of the brain is a frequent clinical entity. In the neuroimaging terms, it is referred to as leukoaraiosis. We earlier found that the co-occurrence of the homozygous methylenetetrahydrofolate reductase (MTHFR) 677TT and angiotensin-converting enzyme D/D (ACE D/D) genotypes yielded a highly significant moderate risk of leukoaraiosis. On the assumption of further genetic interactions, we have now investigated whether the different apolipoprotein E (APO E) genotypes, in pairwise combinations with the MTHFR 677TT or ACE D/D mutation, could lead to an increased risk of leukoaraiosis. Material and methods , We analysed the occurrence of the APO E genotypes in pairwise combinations with the MTHFR 677TT or ACE D/D mutation in 315 consecutive Caucasian patients with leukoaraiosis. A total of 646 neuroimaging-free subjects acted as a control group. Results , The APO E 2/2 and 2/3 or APO E 4/4 and 4/3 genotypes in combination with the MTHFR 677TT or ACE D/D mutation exhibited independent genetic risks of leukoaraiosis. Conclusion , The interactions of certain unfavourable genetic mutations can contribute to the evolution of leukoaraiosis. [source]